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Optimal L2D

Deferral loss

ngfl(ha r) =L l”r(X)zOl]h(X);éY 7 Hr(X):ll]M;éY]
Classifier h(x)

Rejector r(x)
Features X, labels Y and human decisions

Constrained L2D: inf Ey [£,.¢(h(X), r(X), Y, M)] subjected to
h,rEH XA i

_X,Y[fc(h(X)a I’(X),X, Ya M)] < O

* Outcome-dependent losses



Algorithmic and Human Bias: COMPAS
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[Dressel et al., Science Advances 2018}



Algorithmic and Human Bias: CheXpert

- Age: ‘80-100 (n =8,063)" vs. 18-40 (n =7,319)’
" Race: ‘White (n = 32,732)" vs. ‘Black (n = 8,279)’
= Sex: ‘female (n =25,782)" vs. ‘male (n = 27,794)
- | Sex & race: ‘White male (n =18,032) vs. ‘Black female (n = 5,027)’
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[Yang et al., Nature Medicine 2024]
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Algorithmic Fairness

* Demographic Parity (DP): Independence of positive prediction from the sensitive
attribute

» Equality of Opportunity (EOp): Independence of false negative from the sensitive
attribute

» Equalized Odds (EO): Independence of error from the sensitive attribute



Compositionality

We cannot infer independence of a pair of attributes within a sub-universe from the fact
of independence within the universe at large. But the converse theorem is also true; a
pair of attributes does not necessarily exhibit independence within the universe at large
even if it exhibit independence in every sub-universe.

- Udny Yule
Notes on the Theory of Association of Attributes in Statistics 1903
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Complexity

Theorem: Let the human expert and the classifier induce o — 1 losses and assume &
to be finite. Finding an optimal deterministic classifier and rejection function for a
bounded expert intervention budget is an NP-Hard problem.
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Complexity

Theorem: Let the human expert and the classifier induce o — 1 losses and assume &
to be finite. Finding an optimal deterministic classifier and rejection function for a
bounded expert intervention budget is an NP-Hard problem.

Knapsack Problem

=

p(x) 0.1 04 03 0.1 0.1
Ly(M,Y) 0.2 04 0.7 (0.2 0.3

L(h(x),Y) 10.0 0.2 03[ 0.5 0.5

Weight 0.1 04 03 0.1 0.1
Value -3 -2 —-4103 0.2
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(Im)Possibility of Empirical Solution

Proposition: For every deterministic deferral rule 7 for empirical distributions and

based on the two losses [,,_, and [, ,,

=y there exist two probability measures p; and

=y’
Uron X X Y X M such that the corresponding (7, X) for both measures is identically

distributed. However, the optimal deferral 1 and rjj for these measures are not

| 2
interchangeable, that is LC’;; f(h, r) < 3 while L‘fl’e" f(h, r/j;) =3 fori =1,2andj # i.
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. Classification: How to solve 1nt Ey [£(h(X), Y)]?
hekt

. A1 (e.g., Kernel-SVM): Find inf E[®(f(X), Y)] for a surrogate function ® and

fesF

distance function f

» A2 (e.g., Logistic Regression, NNs): Find scores s*(x) = [51(x), ..., sp(x)] related

to the loss E[£( -, - )] and find the maximizer
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Constrained Classification

. Inf Ey [Z(h(X),Y)] subjected to Ey [£.(h(X),Y)] <0
he :

. Regularization Method: Find inf Ey ,[D(f(X), Y)] + kEy ,[DP.(f(X), Y)] fora

fesF
variety of k and for a distance function or score f

» Post-processing: (e.g., Hardt et al. 2017, Cruz et al. 2023): Find scores s* related to
the loss E[Z( -, - )] and threshold differently based on features

* Not studied for all types of constraints
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Randomized Algorithms

My € argmin, —(h,r)Nﬂ[ = XY M [fdef(Y, M, h(X), r(X))”
st. EgpoFx v |PAX. Y, M H(X), r(X))] < 6,

K + 1 combinations of A(x) and r(x)

U, induces a probability f;(x) over the i-th choice

Linear Functional Programming:

T f>1< . [f*, “"fl>§+1] = argmaXfEAsx _X[<f(X)a Wm+1(X)>]

K+1

s.t. Ex|(fx), wi(x))| < ;fori € {1,...,m)

Similarly for constrained classification
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Hypothesis Testing

1. Does k always exist?

2. Is there any other optimal solution?
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One-sample test: whether X is drawn from a distribution H, : P or not

Known alternative: H, :

Size (false positive rate) Ep[7(X)] and power (true negative rate) [ ,[ 7(X)]

Universally Most Powerful Test (Neyman-Pearson Lemma): Most-powerful test for a size at
most « is a likelihood-ratio test, i.e.,

T* = argmax;E,[T(X)] s.t. Ep[T(X)] < 6
where T#(x) = 1 where Q(x) > kP(x) and 7*(x) = 0 where O(x) < kP(x)




Hypothesis Testing: A Formal Take

One-sample test: whether X is drawn from a distribution H, : P or not

Known alternative: H, :

Size (false positive rate) Ep[7(X)] and power (true negative rate) E,[7(X)]

Universally Most Powerful Test (Neyman-Pearson Lemma): Most-powerful test for a size at
most a is a likelihood-ratio test, i.e.,

T* = argmax;E,[T(X)] s.t. Ep[T(X)] < 6
where T#(x) = 1 where Q(x) > kP(x) and 7*(x) = 0 where O(x) < kP(x)

Generalizations and Applications: Lehmann et al. 2005 (Critical Function), Tian and Feng
2021 (Multiclass), Zeng et al. 2024 (Fairness)
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* H,, ..., H;where we reject d — 1 hypothesis

* Receive true positive rewards and false negative losses

e Goal: Maximize sum of rewards, while bounding the sum of losses by &

o [ =1 3] € argmaxge ag B | (X)), yo(X))
st Ex|(f(0),p,(0)] < a
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of constraints, then f*(x) = argmax; [l//m 1) — Z kil//i(x)]j when there is a single
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maximizer, and if we know that constraints are achieved tightly. All optimal solutions

to the linear functional programming is of form above.



d-dimensional Generalization of Neyman-Pearson Lemma
(d-GNP)

* = [f, ... fF] € argmax e g Ex [(AX), v, (X))
st Ex[(f0), yi(0)] <

Theorem (informal): If bounds of constraints are rinnterior—points of all possible pairs

of constraints, then f*(x) = argmax; [l//m 1) — Z kil//i(x)]j when there is a single
i=1

maximizer, and if we know that constraints are achieved tightly. All optimal solutions

to the linear functional programming is of form above.

Theorem (informal): In case of a single constraint, k; is the root of a monotone
function with known closed-form, and a random predictor is drawn for the cases that
we don’t have a single maximizer
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Simplified d-GNP

U, € argmin » hNﬂ[ YNﬂ[\I’l(Y h(X))”

S.L.

h~sf

E et EX Yo W, (X, Y, h(X))| < 6,
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Multi-Objective Learning



Simplified d-GNP

w1 (x) .
20 N
.I‘;ﬂ .
€ argmin, E) s [Exy.,[¥1(Y. ()] ' :\‘\\‘?"
Har P —h~ Y~p ’ ) WAL
st. Epeg/Ex | Yo (X, Y, (X)) | < 6, £ E:{q" ﬁ‘%é:@. |
—h~A=X,Y~u [‘PS (X’ Yv h(X))] < 53’ 5 Q

Multi-Obijective Learning Ensembling



Embedding Functions

Type of Constraint

Embedding Function y(x)

Expert Intervention Budget [O= BT
)
OOD Detection 0,...,0, X |
JX()
[4— A
Demographic Parity ( pr<2_=l D Pr(j : 0) )[0,1, Pr(M = 1]x)]
[ [Py,
Equality of Opportunity (Pr(Y =A1_i4 = =A134 =5 )0, Pr(Y =1|x),Pr(M = 1,Y = 1|x)]




d-GNP in Learn-to-Defer

Validation

— number of
constraints
Xtrain
W (X) /
€ >
Vo (x) Wi (X)
true labels and Embedding

expert decisions Function

A .
{(deer, horse), (frog, frog), (dog, bird), ... (deer, deer)}

Linear Combination

Yes

Fine-tune

Defer 4

Predict . NO

-
using Y

4

>

g

Argmax
J
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Constraint Sample Complexity

Constraint Statistical Generalization: O(y/log n/n,/log(1/€)/n, ") with probability at

least | — € and when scores are ¢’-accurate:
L E[(f0), () — )| < ¢
2. Pr(sup Eq[(ff (0, y(0)| = E,[(ff 0. w())] <d(e) 21~

k.p

41og, en

3. f is in a hypothesis class &# with Rademacher complexity at most
n

4. Using Rademacher generalization inequality, we have

40 = 0y <B0 + /229
n n




Objective Sample Complexity

» Objective Statistical Generalization: O((log n/n)"%, (log(1/€)/n)"*, ¢’y where y
measures the sensitivity of the constraint to the change of predictor
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Constrained Classification

* Fairness Criteria in multi-class classification:
» Embedding function of accuracy: yr(x) = [P(Y=1|X=X),....,.P(Y =K | X = Xx)]
» Embedding function of DP for the first class: y;(x) = [#(A),0,...,0]
» Embedding function of EO for the first class: y;(x) = [f(A)P(Y = 1| X = x),0,...,0]
* Bayes DP-classifier: argmax[P(Y = 1|X =x) — kt(A), ..., P(Y = K| X = x)]
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Constrained Classification

* Fairness Criteria in multi-class classification:
» Embedding function of accuracy: yr(x) = [P(Y=1|X=X),....,.P(Y =K | X = Xx)]
» Embedding function of DP for the first class: y;(x) = [#(A),0,...,0]
» Embedding function of EO for the first class: y;(x) = [f(A)P(Y = 1| X = x),0,...,0]
* Bayes DP-classifier: argmax[P(Y = 1|X =x) — kt(A), ..., P(Y = K| X = x)]
* Bayes EO-classifier: argmax[P(Y = 1| X = x)(1 — kt'(A)), ..., P(Y = K| X = x)]

* Binary classification: Different Thresholding



Experiments: COMPAS Dataset
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Experiments: American Community Survey
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Experiments: Hatespeech Dataset

Not African American Difference

African American
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Conclusion

Constrained Classification and L2D are solvable by a generalization of NP-Lemma

Find embedding function (scores) of each constraint and loss and maximize a linear
combination of them

No need for regularization, therefore computation efficiency
Statistical generalization of d-GNP

Experiments on COMPAS, ACSIncome, and Hatespeech datasets



