Optimal Multi-Objective Learn-to-Defer: Possibility, Complexity, and a Post-Processing Framework

Amin Charusaie January 2025

Learn-to-Defer (L2D) Problem

Deferral loss

 $L^{0-1}_{def}(h,r) = \mathbb{E}\left[\mathbb{I}_{r(X)=0}\mathbb{I}_{h(X)\neq Y} + \mathbb{I}_{r(X)=1}\mathbb{I}_{M\neq Y}\right]$

• Deferral loss

• Classifier h(x)

 $L_{def}^{0-1}(h,r) = \mathbb{E}\left[\mathbb{I}_{r(X)=0}\mathbb{I}_{h(X)\neq Y} + \mathbb{I}_{r(X)=1}\mathbb{I}_{M\neq Y}\right]$

Deferral loss

- Classifier h(x)
- Rejector r(x)

 $L_{def}^{0-1}(h,r) = \mathbb{E}\left[\mathbb{I}_{r(X)=0}\mathbb{I}_{h(X)\neq Y} + \mathbb{I}_{r(X)=1}\mathbb{I}_{M\neq Y}\right]$

Deferral loss

 $L_{def}^{0-1}(h,r) = \mathbb{E}\left[\mathbb{I}_{r(X)=0}\mathbb{I}_{h(X)\neq Y} + \mathbb{I}_{r(X)=1}\mathbb{I}_{M\neq Y}\right]$

- Classifier h(x)
- Rejector r(x)
- Features X, labels Y and human decisions M

Deferral loss

 $L_{def}^{0-1}(h,r) = \mathbb{E}\left[\mathbb{I}_{r(X)=0} \mathbb{I}_{h(X)\neq Y} + \mathbb{I}_{r(X)=1} \mathbb{I}_{M\neq Y} \right]$

- Classifier h(x)
- Rejector r(x)
- Features X, labels Y and human decisions M • Constrained L2D: $\inf_{h,r \in \mathcal{H} \times \mathcal{R}} \mathbb{E}_{X,Y}[\ell_{def}(h(X), r(X), Y, M)]$ subjected to

 $\mathbb{E}_{X,Y}[\ell_{c}(h(X), r(X), X, Y, M)] \leq \delta$

Deferral loss

 $L_{def}^{0-1}(h,r) = \mathbb{E}\left[\mathbb{I}_{r(X)=0}\mathbb{I}_{h(X)\neq Y} + \mathbb{I}_{r(X)=1}\mathbb{I}_{M\neq Y}\right]$

- Classifier h(x)
- Rejector r(x)
- Features X, labels Y and human decisions M

• Constrained L2D: $\inf_{h,r \in \mathcal{H} \times \mathcal{R}} \mathbb{E}_{X,Y}[\ell_{def}(h(X), r(X), Y, M)]$ subjected to $\mathbb{E}_{X,Y}[\ell_{c}(h(X), r(X), X, Y, M)] \leq \delta$

Outcome-dependent losses

Algorithmic and Human Bias: COMPAS

[Dressel et al., Science Advances 2018]

Algorithmic and Human Bias: CheXpert

 Demographic Parity (DP): Independen attribute

• Demographic Parity (DP): Independence of positive prediction from the sensitive

- Demographic Parity (DP): Independen attribute
- Equality of Opportunity (EOp): Indepo attribute

• Demographic Parity (DP): Independence of positive prediction from the sensitive

• Equality of Opportunity (EOp): Independence of false negative from the sensitive

- attribute
- attribute
- Equalized Odds (EO): Independence of error from the sensitive attribute

• Demographic Parity (DP): Independence of positive prediction from the sensitive

• Equality of Opportunity (EOp): Independence of false negative from the sensitive

Compositionality

We cannot infer independence of a pair of attributes within a sub-universe from the fact of independence within the universe at large. But the converse theorem is also true; a pair of attributes does not necessarily exhibit independence within the universe at large even if it exhibit independence in every sub-universe.

- Udny Yule

Notes on the Theory of Association of Attributes in Statistics 1903

Compositionality

We cannot infer independence of a pair of attributes within a sub-universe from the fact of independence within the universe at large. But the converse theorem is also true; a pair of attributes does not necessarily exhibit independence within the universe at large even if it exhibit independence in every sub-universe.

- Udny Yule

Notes on the Theory of Association of Attributes in Statistics 1903

L2D Example

Μ

Y

Complexity

Complexity

bounded expert intervention budget is an NP-Hard problem.

Theorem: Let the human expert and the classifier induce o - 1 losses and assume \mathcal{X} to be finite. Finding an optimal deterministic classifier and rejection function for a

Complexity

bounded expert intervention budget is an NP-Hard problem.

Theorem: Let the human expert and the classifier induce o - 1 losses and assume \mathcal{X} to be finite. Finding an optimal deterministic classifier and rejection function for a

Human Correct

Model Correct

0

Human Correct

Model Correct

Human Correct

Model Correct

Proposition: For every deterministic deferral rule \hat{r} for empirical distributions and based on the two losses $\mathbb{I}_{m=y}$ and $\mathbb{I}_{h(x)=y}$, there exist two probability measures μ_1 and μ_2 on $\mathscr{X} \times \mathscr{Y} \times \mathscr{M}$ such that the corresponding (\hat{r}, X) for both measures is identically distributed. However, the optimal deferral $r^*_{\mu_1}$ and $r^*_{\mu_2}$ for these measures are not interchangeable, that is $L^{\mu_i}_{def}(h, r^*_{\mu_i}) \leq \frac{1}{3}$ while $L^{\mu_i}_{def}(h, r^*_{\mu_j}) = \frac{2}{3}$ for i = 1, 2 and $j \neq i$.

• Classification: How to solve $\inf_{h \in \mathcal{H}} \mathbb{E}_{X,Y}[\ell(h(X), Y)]?$

Classification: How to solve inf E_{X,Y}[ℓ(h(X), Y)]?
A1 (e.g., Kernel-SVM): Find inf E[Φ(f(X), Y)] for a surrogate function Φ and f∈F distance function f

- Classification: How to solve $\inf_{h \in \mathcal{H}} \mathbb{E}_{X,Y}[\ell(h(X), Y)]?$ • A1 (e.g., Kernel-SVM): Find inf $\mathbb{E}[\Phi(f(X), Y)]$ for a surrogate function Φ and f∈ℱ
 - distance function f
 - to the loss $\mathbb{E}[\ell(\cdot, \cdot)]$ and find the maximizer

• A2 (e.g., Logistic Regression, NNs): Find scores $s^{K}(x) = [s_1(x), \dots, s_K(x)]$ related

• inf $\mathbb{E}_{X,Y}[\ell(h(X), Y)]$ subjected to $\mathbb{E}_{X,Y}[\ell_c(h(X), Y)] \le \delta$ $h \in \mathcal{H}$

 inf E_{X,Y}[ℓ(h(X), Y)] subjected to E_{X,Y}[ℓ_c(h(X), Y)] ≤ δ h∈ℋ
 Regularization Method: Find inf E_{X,Y}[Φ(f(X), Y)] + kE_{X,Y}[Φ_c(f(X), Y)] for a f∈ℱ variety of k and for a distance function or score f

- inf $\mathbb{E}_{X,Y}[\ell(h(X), Y)]$ subjected to $\mathbb{E}_{X,Y}[\ell_c(h(X), Y)] \le \delta$ $h \in \mathcal{H}$
 - Regularization Method: Find $\inf_{f \in \mathcal{F}} \mathbb{E}_{X,Y}[\Phi(f(X), Y)] + k\mathbb{E}_{X,Y}[\Phi_c(f(X), Y)]$ for a variety of k and for a distance function or score f
 - Post-processing: (e.g., Hardt et al. 2017, Cruz et al. 2023): Find scores s^K related to the loss $\mathbb{E}[\ell(\cdot, \cdot)]$ and threshold differently based on features

- inf $\mathbb{E}_{X,Y}[\ell(h(X), Y)]$ subjected to $\mathbb{E}_{X,Y}[\ell_c(h(X), Y)] \le \delta$ $h \in \mathcal{H}$
 - Regularization Method: Find $\inf_{f \in \mathcal{F}} \mathbb{E}_{X,Y}[\Phi(f(X), Y)] + k\mathbb{E}_{X,Y}[\Phi_c(f(X), Y)]$ for a variety of k and for a distance function or score f
 - Post-processing: (e.g., Hardt et al. 2017, Cruz et al. 2023): Find scores s^K related to the loss E[l(., .)] and threshold differently based on features
 - Not studied for all types of constraints

Randomized Algorithms

Randomized Algorithms

 $\mu_{\mathscr{A}} \in \operatorname{argmin}_{\mu_{\mathscr{A}}} \mathbb{E}_{(h,r)\sim\mathscr{A}} \left[\mathbb{E}_{X,Y,M\sim\mu} \left[\ell_{\operatorname{def}}(Y,M,h(X),r(X)) \right] \right]$ s.t. $\mathbb{E}_{(h,r)\sim\mathscr{A}} \mathbb{E}_{X,Y,M\sim\mu} \left[\Psi_i \left(X,Y,M,h(X),r(X) \right) \right] \leq \delta_i,$

s.t. $\mathbb{E}_{(h,r)\sim \mathscr{A}}\mathbb{E}$ • K + 1 combinations of h(x) and r(x)

 $\mu_{\mathscr{A}} \in \operatorname{argmin}_{\mu_{\mathscr{A}}} \mathbb{E}_{(h,r)\sim\mathscr{A}} \left[\mathbb{E}_{X,Y,M\sim\mu} \left[\ell_{\operatorname{def}}(Y,M,h(X),r(X)) \right] \right]$ s.t. $\mathbb{E}_{(h,r)\sim\mathscr{A}} \mathbb{E}_{X,Y,M\sim\mu} \left[\Psi_i \left(X,Y,M,h(X),r(X) \right) \right] \leq \delta_i,$

• $\mu_{\mathscr{A}} \in \operatorname{argmin}_{\mu_{\mathscr{A}}} \mathbb{E}_{(h,r)\sim\mathscr{A}} \left[\mathbb{E}_{X,Y,M\sim\mu} \left[\ell_{\operatorname{def}}(Y,M,h(X),r(X)) \right] \right]$ s.t. $\mathbb{E}_{(h,r)\sim\mathscr{A}} \mathbb{E}_{X,Y,M\sim\mu} \left[\Psi_i \left(X, Y, M, h(X), r(X) \right) \right] \leq \delta_i,$ • K + 1 combinations of h(x) and r(x)

• $\mu_{\mathcal{A}}$ induces a probability $f_i(x)$ over the *i*-th choice

- K + 1 combinations of h(x) and r(x)
- $\mu_{\mathcal{A}}$ induces a probability $f_i(x)$ over the *i*-th choice
- Linear Functional Programming:

 $\mu_{\mathscr{A}} \in \operatorname{argmin}_{\mu_{\mathscr{A}}} \mathbb{E}_{(h,r) \sim \mathscr{A}} \left[\mathbb{E}_{X,Y,M \sim \mu} \left[\ell_{\operatorname{def}}(Y,M,h(X),r(X)) \right] \right]$ s.t. $\mathbb{E}_{(h,r)\sim\mathscr{A}}\mathbb{E}_{X,Y,M\sim\mu}\left[\Psi_i(X,Y,M,h(X),r(X))\right] \leq \delta_i,$

- K + 1 combinations of h(x) and r(x)
- $\mu_{\mathcal{A}}$ induces a probability $f_i(x)$ over the *i*-th choice
- Linear Functional Programming:

• $f^* = [f_1^*, \dots, f_{K+1}^*] \in \operatorname{argmax}_{f \in \Delta_{K+1}^{\mathcal{X}}} \mathbb{E}_X[\langle f(X), \psi_{m+1}(X) \rangle]$ s.t. $\mathbb{E}_X[\langle f(x), \psi_i(x) \rangle] \leq \delta_i \text{ for } i \in \{1, \dots, m\}$

 $\mu_{\mathscr{A}} \in \operatorname{argmin}_{\mu_{\mathscr{A}}} \mathbb{E}_{(h,r) \sim \mathscr{A}} \left[\mathbb{E}_{X,Y,M \sim \mu} \left[\ell_{\operatorname{def}}(Y,M,h(X),r(X)) \right] \right]$ s.t. $\mathbb{E}_{(h,r)\sim\mathcal{A}}\mathbb{E}_{X,Y,M\sim\mu}\left[\Psi_i(X,Y,M,h(X),r(X))\right] \leq \delta_i,$

- K + 1 combinations of h(x) and r(x)
- $\mu_{\mathcal{A}}$ induces a probability $f_i(x)$ over the *i*-th choice
- Linear Functional Programming:

• $f^* = [f_1^*, \dots, f_{K+1}^*] \in \operatorname{argmax}_{f \in \Delta_{K+1}^{\mathcal{X}}} \mathbb{E}_X[\langle f(X), \psi_{m+1}(X) \rangle]$ s.t. $\mathbb{E}_X[\langle f(x), \psi_i(x) \rangle] \leq \delta_i \text{ for } i \in \{1, \dots, m\}$ Similarly for constrained classification

 $\mu_{\mathscr{A}} \in \operatorname{argmin}_{\mu_{\mathscr{A}}} \mathbb{E}_{(h,r) \sim \mathscr{A}} \left[\mathbb{E}_{X,Y,M \sim \mu} \left[\ell_{\operatorname{def}}(Y,M,h(X),r(X)) \right] \right]$ s.t. $\mathbb{E}_{(h,r)\sim\mathcal{A}}\mathbb{E}_{X,Y,M\sim\mu}\left[\Psi_i(X,Y,M,h(X),r(X))\right] \leq \delta_i,$

Neyman and Pearson 1933

Neyman and Pearson 1933

Does k always exist? Is there any other optimal solution?

• One-sample test: whether *X* is drawn from a distribution *H*₀ : *P* or not

• One-sample test: whether X is drawn from a distribution H_0 : P or not

• Known alternative: H_a : Q

- One-sample test: whether X is drawn from a distribution H_0 : P or not
- Known alternative: $H_a: Q$
- Size (false positive rate) $\mathbb{E}_{P}[T(X)]$ and power (true negative rate) $\mathbb{E}_{O}[T(X)]$

- One-sample test: whether X is drawn from a distribution H_0 : P or not
- Known alternative: H_a : Q
- Size (false positive rate) $\mathbb{E}_{P}[T(X)]$ and power (true negative rate) $\mathbb{E}_{O}[T(X)]$
- most α is a likelihood-ratio test, i.e.,

where $T^*(x) = 1$ where Q(x) > kP(x) and $T^*(x) = 0$ where Q(x) < kP(x)

• Universally Most Powerful Test (Neyman-Pearson Lemma): Most-powerful test for a size at

 $T^* = \operatorname{argmax}_T \mathbb{E}_O[T(X)] \text{ s.t. } \mathbb{E}_P[T(X)] \le \delta$

- One-sample test: whether X is drawn from a distribution H_0 : P or not
- Known alternative: H_a : Q
- Size (false positive rate) $\mathbb{E}_{P}[T(X)]$ and power (true negative rate) $\mathbb{E}_{O}[T(X)]$ • Universally Most Powerful Test (Neyman-Pearson Lemma): Most-powerful test for a size at
- most α is a likelihood-ratio test, i.e.,

where $T^*(x) = 1$ where Q(x) > kP(x) and $T^*(x) = 0$ where Q(x) < kP(x)

Generalizations and Applications: Lehmann et al. 2005 (Critical Function), Tian and Feng 2021 (Multiclass), Zeng et al. 2024 (Fairness)

 $T^* = \operatorname{argmax}_T \mathbb{E}_O[T(X)] \text{ s.t. } \mathbb{E}_P[T(X)] \le \delta$

• H_1, \ldots, H_d where we reject d - 1 hypothesis

*H*₁,...,*H_d* where we reject *d* – 1 hypothesis
Receive true positive rewards and false negative losses

*H*₁,...,*H*_d where we reject *d* – 1 hypothesis
Receive true positive rewards and false negative losses
Goal: Maximize sum of rewards, while bounding the sum of losses by *α*

*H*₁,...,*H*_d where we reject *d* – 1 hypothesis
Receive true positive rewards and false negative losses
Goal: Maximize sum of rewards, while bounding the sum of losses by *α f** = [*f*^{*}₁,...,*f*^{*}_d] ∈ argmax_{f∈Δ^x_d} E_X[⟨*f*(X), ψ₂(X)⟩] s.t. E_X[⟨*f*(x), ψ₁(x)⟩] ≤ *α*

• $f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta_d^{\mathcal{X}}} \mathbb{E}_X[\langle f(X), \psi_{m+1}(X) \rangle]$ s.t. $\mathbb{E}_X[\langle f(x), \psi_i(x) \rangle] \leq \alpha_i$

• $f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X[\langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X[\langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X[\langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X[\langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X[\langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X[\langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X[\langle f(f) \rangle = f^* =$ s.t. $\mathbb{E}_X[\langle f(x), \psi_i(x) \rangle] \leq \alpha_i$

Theorem (informal): If bounds of constraints are interior-points of all possible pairs of constraints, then $f^*(x) = \operatorname{argmax}_j [\psi_{m+1}(x) - \sum k_i \psi_i(x)]_j$ when there is a single *maximizer,* and if we know that constraints are achieved tightly. All optimal solutions to the linear functional programming is of form above.

$$(X), \psi_{m+1}(X)\rangle$$

• $f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}}} \mathbb{E}_X | \langle f(f) \rangle = f^* = [f_1^*, \dots, f_d^*] \in \operatorname{argmax}_{f \in \Delta^{\mathcal{X}} \mathbb{E}$ s.t. $\mathbb{E}_X[\langle f(x), \psi_i(x) \rangle] \leq \alpha_i$

Theorem (informal): If bounds of constraints are interior-points of all possible pairs of constraints, then $f^*(x) = \operatorname{argmax}_j [\psi_{m+1}(x) - \sum k_i \psi_i(x)]_j$ when there is a single *maximizer*, and if we know that constraints are achieved tightly. All optimal solutions to the linear functional programming is of form above.

Theorem (informal): In case of a single constraint, k_1 is the root of a monotone function with known closed-form, and a random predictor is drawn for the cases that we don't have a single maximizer

$$(X), \psi_{m+1}(X)\rangle$$

Simplified d-GNP

 $\mu_{\mathscr{A}} \in \operatorname{argmin}_{\mu_{\mathscr{A}}} \mathbb{E}_{h \sim \mathscr{A}} \big[\mathbb{E}_{X, Y \sim \mu} \big[\Psi_1(Y, h(X)) \big] \big]$ s.t. $\mathbb{E}_{h\sim\mathscr{A}}\mathbb{E}_{X,Y\sim\mu}\left[\Psi_2(X,Y,h(X))\right] \leq \delta_2,$ $\mathbb{E}_{h\sim\mathscr{A}}\mathbb{E}_{X,Y\sim\mu}\left[\Psi_{3}(X,Y,h(X))\right] \leq \delta_{3},$

Multi-Objective Learning

Simplified d-GNP

$$\begin{split} \mu_{\mathscr{A}} &\in \operatorname{argmin}_{\mu_{\mathscr{A}}} \mathbb{E}_{h \sim \mathscr{A}} \big[\mathbb{E}_{X, Y \sim \mu} \big[\Psi_{1}(Y, h(X)) \big] \big] \\ \text{s.t.} \quad \mathbb{E}_{h \sim \mathscr{A}} \mathbb{E}_{X, Y \sim \mu} \big[\Psi_{2} \big(X, Y, h(X) \big) \big] \leq \delta_{2}, \\ \mathbb{E}_{h \sim \mathscr{A}} \mathbb{E}_{X, Y \sim \mu} \big[\Psi_{3} \big(X, Y, h(X) \big) \big] \leq \delta_{3}, \end{split}$$

Multi-Objective Learning

Simplified d-GNP

Ensembling

Embedding Functions

Type of Constraint

Expert Intervention Budget

OOD Detection

Demographic Parity

Equality of Opportunity

Embedding Function $\psi(x)$

[0,...,0,1]

$$[0,\ldots,0,\frac{f_X^{\text{out}}(x)}{f_X^{\text{in}}(x)}]$$

$$\left(\frac{\mathbb{I}_{A=1}}{Pr(A=1)} - \frac{\mathbb{I}_{A=0}}{Pr(A=0)}\right)[0,1,\Pr(M=1 \mid x)]$$

 $\left(\frac{\mathbb{I}_{A=1}}{Pr(Y=1,A=1)} - \frac{\mathbb{I}_{A=0}}{Pr(Y=1,A=0)}\right)[0,\Pr(Y=1 \mid x),\Pr(M=1,Y=1 \mid x)]$

Constraint Statistical Generalization: $O(\sqrt{\log n/n}, \sqrt{\log(1/\epsilon)/n}, \epsilon')$ with probability at least $1 - \epsilon$ and when scores are ϵ' -accurate:

Constraint Statistical Generalization: $O(\sqrt{\log n/n}, \sqrt{\log(1/\epsilon)/n}, \epsilon')$ with probability at least $1 - \epsilon$ and when scores are ϵ' -accurate: 1. $\mathbb{E}[\langle f(x), \hat{\psi}(x) - \psi(x) \rangle] \leq \epsilon'$

least $1 - \epsilon$ and when scores are ϵ' -accurate: 1. $\mathbb{E}\left[\langle f(x), \hat{\psi}(x) - \psi(x) \rangle\right] \leq \epsilon'$ 2. $\Pr\left(\sup \mathbb{E}_{S^n}\left[\langle f_{k,p}^*(x), \psi(x) \rangle\right] - \mathbb{E}_{\mu}\left[\langle f_{k,p}^*(x), \psi(x) \rangle\right] \le d_n(\epsilon)\right) \ge 1 - \epsilon$

Constraint Statistical Generalization: $O(\sqrt{\log n/n}, \sqrt{\log(1/\epsilon)/n}, \epsilon')$ with probability at

least $1 - \epsilon$ and when scores are ϵ' -accurate: 1. $\mathbb{E}\left[\langle f(x), \hat{\psi}(x) - \psi(x) \rangle\right] \leq \epsilon'$ 2. $\Pr\left(\sup \mathbb{E}_{S^n}\left[\langle f_{k,p}^*(x), \psi(x) \rangle\right] - \mathbb{E}_{\mu}\left[\langle f_{k,p}^*(x), \psi(x) \rangle\right] \le d_n(\epsilon)\right) \ge 1 - \epsilon$

3. $f_{k,p}^*$ is in a hypothesis class \mathcal{F} with Rademacher complexity at most

Constraint Statistical Generalization: $O(\sqrt{\log n/n}, \sqrt{\log(1/\epsilon)/n}, \epsilon')$ with probability at

 $4\log_2 en$ n

least $1 - \epsilon$ and when scores are ϵ' -accurate: 1. $\mathbb{E}\left[\langle f(x), \hat{\psi}(x) - \psi(x) \rangle\right] \leq \epsilon'$ 2. $\Pr\left(\sup \mathbb{E}_{S^n}\left[\langle f_{k,p}^*(x), \psi(x) \rangle\right] - \mathbb{E}_{\mu}\left[\langle f_{k,p}^*(x), \psi(x) \rangle\right] \le d_n(\epsilon)\right) \ge 1 - \epsilon$ 3. f_{kn}^* is in a hypothesis class \mathcal{F} with Rademacher complexity at most 4. Using Rademacher generalization inequality, we have $d_n(\epsilon) = O\left(\sqrt{\frac{\log n}{n}} + \sqrt{\frac{\log(\epsilon)}{n}}\right)$

Constraint Statistical Generalization: $O(\sqrt{\log n/n}, \sqrt{\log(1/\epsilon)/n}, \epsilon')$ with probability at

 $4\log_2 en$ n

Objective Sample Complexity

measures the sensitivity of the constraint to the change of predictor

K

• Objective Statistical Generalization: $O((\log n/n)^{1/2\gamma}, (\log(1/\epsilon)/n)^{1/2\gamma}, \epsilon')$ where γ

K

Fairness Criteria in multi-class classification:

Fairness Criteria in multi-class classification:
Embedding function of accuracy: ψ₂(x) = [P(Y = 1 | X = x), ..., P(Y = K | X = x)]

• Fairness Criteria in multi-class classification: • Embedding function of DP for the first class: $\psi_1(x) = [t(A), 0, ..., 0]$

• Embedding function of accuracy: $\psi_2(x) = [P(Y = 1 | X = x), \dots, P(Y = K | X = x)]$

- Fairness Criteria in multi-class classification: • Embedding function of DP for the first class: $\psi_1(x) = [t(A), 0, ..., 0]$

• Embedding function of accuracy: $\psi_2(x) = [P(Y = 1 | X = x), \dots, P(Y = K | X = x)]$ • Embedding function of EO for the first class: $\psi_1(x) = [t'(A)P(Y = 1 | X = x), 0, ..., 0]$

- Fairness Criteria in multi-class classification:

 - Embedding function of DP for the first class: $\psi_1(x) = [t(A), 0, ..., 0]$

• Embedding function of accuracy: $\psi_2(x) = [P(Y = 1 | X = x), ..., P(Y = K | X = x)]$ • Embedding function of EO for the first class: $\psi_1(x) = [t'(A)P(Y = 1 | X = x), 0, ..., 0]$ • Bayes DP-classifier: $\operatorname{argmax}[P(Y = 1 | X = x) - kt(A), \dots, P(Y = K | X = x)]$

- Fairness Criteria in multi-class classification:

 - Embedding function of DP for the first class: $\psi_1(x) = [t(A), 0, ..., 0]$

• Embedding function of accuracy: $\psi_2(x) = [P(Y = 1 | X = x), ..., P(Y = K | X = x)]$ • Embedding function of EO for the first class: $\psi_1(x) = [t'(A)P(Y = 1 | X = x), 0, ..., 0]$ • Bayes DP-classifier: $\operatorname{argmax}[P(Y = 1 | X = x) - kt(A), \dots, P(Y = K | X = x)]$ • Bayes EO-classifier: $\operatorname{argmax}[P(Y = 1 | X = x)(1 - kt'(A)), \dots, P(Y = K | X = x)]$

- Fairness Criteria in multi-class classification:

 - Embedding function of DP for the first class: $\psi_1(x) = [t(A), 0, ..., 0]$
- **Binary classification: Different Thresholding**

• Embedding function of accuracy: $\psi_2(x) = [P(Y = 1 | X = x), \dots, P(Y = K | X = x)]$ • Embedding function of EO for the first class: $\psi_1(x) = [t'(A)P(Y = 1 | X = x), 0, ..., 0]$ • Bayes DP-classifier: $\operatorname{argmax}[P(Y = 1 | X = x) - kt(A), \dots, P(Y = K | X = x)]$ • Bayes EO-classifier: $\arg\max[P(Y = 1 | X = x)(1 - kt'(A)), ..., P(Y = K | X = x)]$

Experiments: COMPAS Dataset

Experiments: American Community Survey

Experiments: Hatespeech Dataset

African American

1.0 1.0 Ground Truth Ground Truth uman Prediction Human Prediction Classifier Prediction **Classifier Prediction** 0.8 0.8 HAI Prediction **HAI Prediction** d-GNP (DP-O) d-GNP (DP-O) d-GNP (DP-HS) d-GNP (DP-HS) 0.6 0.6 0.4 0.4 0.2 0.2 0.0 Offensive Neither Hate Speech Hate Speech

Not African American

Difference

Conclusion

- combination of them
- No need for regularization, therefore computation efficiency
- Statistical generalization of d-GNP
- Experiments on COMPAS, ACSIncome, and Hatespeech datasets

• Constrained Classification and L2D are solvable by a generalization of NP-Lemma • Find embedding function (scores) of each constraint and loss and maximize a linear

