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• Outcome-dependent losses

Optimal L2D



Algorithmic and Human Bias: COMPAS

[Dressel et al., Science Advances 2018]



[Yang et al., Nature Medicine 2024]

Algorithmic and Human Bias: CheXpert
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• Demographic Parity (DP): Independence of positive prediction from the sensitive 
attribute

• Equality of Opportunity (EOp): Independence of false negative from the sensitive 
attribute

• Equalized Odds (EO): Independence of error from the sensitive attribute
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Proposition: For every deterministic deferral rule  for empirical distributions and 
based on the two losses  and , there exist two probability measures  and 

 on  such that the corresponding  for both  measures is identically 
distributed. However, the optimal deferral and  for these measures are not 

interchangeable, that is  while  for  and .

̂r
𝕀m=y 𝕀h(x)=y μ1

μ2 𝒳 × 𝒴 × ℳ ( ̂r, X)
r*μ1

r*μ2

Lμi
def(h, r*μi

) ≤
1
3

Lμi
def(h, r*μj

) =
2
3

i = 1,2 j ≠ i

(Im)Possibility of Empirical Solution
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• Classification: How to solve ?inf
h∈ℋ

𝔼X,Y[ℓ(h(X), Y)]

• A1 (e.g., Kernel-SVM): Find  for a surrogate function  and 

distance function 

inf
f∈ℱ

𝔼[Φ( f(X), Y)] Φ

f

• A2 (e.g., Logistic Regression, NNs): Find scores  related 
to the loss  and find the maximizer

sK(x) = [s1(x), …, sK(x)]
𝔼[ℓ( ⋅ , ⋅ )]
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k f

• Post-processing: (e.g., Hardt et al. 2017, Cruz et al. 2023): Find scores  related to 
the loss  and threshold differently based on features

sK

𝔼[ℓ( ⋅ , ⋅ )]
• Not studied for all types of constraints
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• Linear Functional Programming: 

•  
s.t.     for 
f* = [ f*1 , …, f*K+1] ∈ argmaxf∈Δ𝒳

K+1
𝔼X[⟨ f(X), ψm+1(X)⟩]

𝔼X[⟨ f(x), ψi(x)⟩] ≤ δi i ∈ {1,…, m}

• Similarly for constrained classification
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My thesis was on two famous unsolved problems in mathematical statistics 

Hypothesis Testing

1. Does  always exist?

2. Is there any other optimal solution?

k
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• Known alternative: Ha : Q

• Size (false positive rate)  and power (true negative rate) 𝔼P[T(X)] 𝔼Q[T(X)]

• Universally Most Powerful Test (Neyman-Pearson Lemma): Most-powerful test for a size at 
most  is a likelihood-ratio test, i.e., 
                                             s.t.  
where  where  and  where 

α
T* = argmaxT𝔼Q[T(X)] 𝔼P[T(X)] ≤ δ

T*(x) = 1 Q(x) > kP(x) T*(x) = 0 Q(x) < kP(x)
• Generalizations and Applications: Lehmann et al. 2005 (Critical Function), Tian and Feng 

2021 (Multiclass), Zeng et al. 2024 (Fairness)
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Simplified d-GNP

Ensembling

=
  

 s.t.     
μ𝒜 ∈ argminμ𝒜
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Multi-Objective Learning



Embedding Functions

Embedding Function ψ(x)

Expert Intervention Budget [0,…,0,1]

OOD Detection [0,…,0,
f out
X (x)
f in
X (x)

]

Demographic Parity ( 𝕀A=1

Pr(A = 1) −
𝕀A=0

Pr(A = 0) )[0,1, Pr(M = 1 |x)]

Equality of Opportunity ( 𝕀A=1

Pr(Y = 1,A = 1) −
𝕀A=0

Pr(Y = 1,A = 0) )[0, Pr(Y = 1 |x), Pr(M = 1,Y = 1 |x)]

Type of Constraint
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2.  Pr ( sup
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𝔼Sn[⟨ f*k,p(x), ψ(x)⟩] − 𝔼μ[⟨ f*k,p(x), ψ(x)⟩] ≤ dn(ϵ)) ≥ 1 − ϵ

3.   is in a hypothesis class  with Rademacher complexity at most f*k,p ℱ
4 log2 en

n
4. Using Rademacher generalization inequality, we have 

dn(ϵ) = O( log n
n

+
log(ϵ)

n )



Objective Sample Complexity

• Objective Statistical Generalization:  where  
measures the sensitivity of the constraint to the change of predictor

O((log n/n)1/2γ, (log(1/ϵ)/n)1/2γ, ϵ′￼) γ

kk
O

bj
ec

tiv
e

Se
ns

iti
vi

ty
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• Fairness Criteria in multi-class classification:

• Embedding function of accuracy: ψ2(x) = [P(Y = 1 |X = x), …, P(Y = K |X = x)]

• Embedding function of DP for the first class: ψ1(x) = [t(A),0,…,0]

• Embedding function of EO for the first class: ψ1(x) = [t′￼(A)P(Y = 1 |X = x),0,…,0]

• Bayes DP-classifier: argmax[P(Y = 1 |X = x) − kt(A), …, P(Y = K |X = x)]

• Bayes EO-classifier: argmax[P(Y = 1 |X = x)(1 − kt′￼(A)), …, P(Y = K |X = x)]
• Binary classification: Different Thresholding
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Experiments: Hatespeech Dataset

African American Not African American Difference



Conclusion

• Constrained Classification and L2D are solvable by a generalization of NP-Lemma


• Find embedding function (scores) of each constraint and loss and maximize a linear 
combination of them


• No need for regularization, therefore computation efficiency


• Statistical generalization of d-GNP


• Experiments on COMPAS, ACSIncome, and Hatespeech datasets


