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Benchmarks in ML: An Epistemology?

Figure 1: ImageNet Classification top-5 error (%) in [Nguyen et al., 2017]
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“The iron rule of machine learning” [Hardt, 2024]

Scientific progress in ML: Whatever works, judged by benchmark results.

Definition (Benchmark)

1 Predictive tasks T = {T1, . . . ,Tr}, specified by input and output features.
2 Standardised datasets D = (Dtrain,Dleaderboard).
3 Evaluation metrics L = {L1, . . . , Lq}.
4 Public leaderboard with model ranking and/or scores.
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There is a gap between benchmark island and real world inferences.

4 / 10



How to bridge the gap?

That is, how can we use benchmark results for scientific inferences?

Machine learning benchmarks are very similar to tests in educational or psychological research:
1 We operationalize a latent skill as a concrete prediction task.
2 The test items are represented by data.
3 We assign skill scores based on empirical risk.

Construct Validity

There is a whole research field that is concerned with the validity of inferences based on test scores
called construct validity. See, for example, [Cronbach and Meehl, 1955], [Messick, 1995], [Strauss and
Smith, 2009], [Tal, 2020].
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Inference I & II: Model and algorithm comparison

Figure 2: ImageNet Classification top-5 error (%) in
[Nguyen et al., 2017]

Do improvements on the ImageNet
leaderboard imply progress in image
classification?

Typical inferences

▶ Ranking models.
▶ Inferring model skill scores.
▶ Ranking learning algorithms.

Empirical work by [Recht et al., 2019] and
[Salaudeen and Hardt, 2024] indicates that
model and algorithm rankings on ImageNet
are robust at the task level, but not the skill
scores.

6 / 10



Inference I & II: Model and algorithm comparison

Figure 2: ImageNet Classification top-5 error (%) in
[Nguyen et al., 2017]

Do improvements on the ImageNet
leaderboard imply progress in image
classification?

Typical inferences

▶ Ranking models.
▶ Inferring model skill scores.
▶ Ranking learning algorithms.

Empirical work by [Recht et al., 2019] and
[Salaudeen and Hardt, 2024] indicates that
model and algorithm rankings on ImageNet
are robust at the task level, but not the skill
scores.

6 / 10



Inference III: Deployment decisions

Should we deploy the weather forecasting
model GraphCast for energy planing?

Typical Inferences

▶ Deployment rankings.
▶ Deployment utility.

Figure 3: WeatherBench RMSE on z500 in [Lam et
al,. 2023].
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Inference IV: Predictability

Figure 4: Results of the Fragile Families Challenge
in [Salganik et al., 2019].

How predictable are life outcomes at the age
of 15 from survey data?

Typical Inferences

▶ Bayes risk of a prediction task.
▶ Predictability of an outcome.
▶ Model selection: Theory development

based on predictive performance.
▶ Finding relevant features.

The results of the Fragile Families Challenge
indicate that life outcomes (at the age of 15)
are poorly predictable, especially for a subset
of families.
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Summary

▶ Benchmarks are the central evaluation and model comparison method in ML.
▶ From measurement theory to ML: The theory of construct validity allows us to explicate required

assumptions to support valid inferences from benchmarks.
▶ From ML to the empirical sciences: We can utilize the benchmark methodology in empirical

research.
▶ Benchmark results form the basis for various scientific inferences:

Model and algorithm comparison.
Deployment decisions.
Predictability.
...

How do you use benchmark results in your work?
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