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Early crystallization in deep learning

Setup:

▶ Dataset of pairs (xi, yi)

▶ Neural Network ŷi = f(xi,θ) with parameters θ ∈ RD

▶ Loss L(θ) =
∑

i ℓ(yi, f(xi,θ)) ∈ R≥0 with gradient g ∈ RD and Hessian H ∈ RD×D

Early crystallization of parameters:

▶ Parameters can be pruned (Blalock et al. 2020)
▶ Pruning masks θ � m appear early in training

(Frankle et al. 2019)
▶ Magnitude pruning masks don’t change much

during training! (You et al. 2020)

Early crystallization of loss landscape:

▶ H is rank-defficient, i.e. H ≈ UtopΛtopU⊤top (e.g.
Sagun et al. 2018)

▶ g resides mostly in Utop (Gur-Ari et al. 2019)
▶ span(Utop) doesn’t change much during

training! (Gur-Ari et al. 2019)

Are those connected?Cheap! Expensive!
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Research questions and contributions

Questions:

▶ Can this similarity be measured? If so, how?

▶ What similarity can be considered high? What are the implications?

Contributions:

▶ Methodology to compare arbitrary k-parameter masks to top-k Hessian eigenspaces

▶ Algorithm and code to perform said measurements at scale → Hessian eigendecompositions

▶ In DL, connection is orders of magnitude larger than random

▶ Potential implications for pruning, optimization, UQ and loss landscape analysis
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Comparing parameters with Hessian subspaces

Top-k parameter pruning is a projection onto ID,k:

P⊤(mk�θ) = m̃k�θ̃ =

(
Ik 0
0 0

)
θ̃ =: ID,kI⊤D,kθ̃

Also recall the top-k eigenbasis Utop:

H=
(

Utop Ubulk

) Dtop

Dbulk≈0

 U⊤top
U⊤bulk



▶ We have same-shape, orthogonal matrices ID,k and Utop

▶ Grassmannian metrics measure the distance between their spaces

▶ Theoretical and empirical analysis of several Grassmannian metrics

▶ The overlap metric is stable and has a random baseline value of k
D :

1
k
‖I⊤D,kUtop‖2

F ∈ [0, 1] (higher ⇐⇒ more similar)
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Computing the EIGH via sketched methods

▶ Computing overlap requires top-k Hessian eigendecomposition 1
k‖I

⊤
D,kUtop‖2

F

▶ Intractable: O(D2) memory, O(D3) arithmetic (Golub et al. 2013)

▶ Expensive measurements: Each w = Hv costs 2 forward+backpropagations (Pearlmutter 1994)

▶ Sketched methods: O(k) parallel measurements, O(Dk) memory (Halko et al. 2011)

▶ PyTorch library: skerch
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Sketched SVD: Intuition

▶ Consider a LinOp, very large and matrix-free, with expensive measurements
but some simpler sub-structure (low-rank in this case)

▶ We’ll see how to sketch-and-solve:
▶ Draw a few random measurements in a way that captures the sub-structure

▶ Project measurements back into original space

▶ We will cover:
▶ Sketching step: random measurements with guarantees

▶ Solving step: cheap, traiditonal linear algebra

▶ How this may help approximating full DL Hessians
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The Randomized Range Finder (RRF) (Halko et al. 2011)
Let’s revisit our low-rank operator A∈m×n:

A :=
(

U Ū
) D

Ē

  V∗

V̄∗

 ≈ U D V∗

Consider Ũ, Ṽ as rotations of U, V, such that Ũ := UZ for unitary Z ∈k×k. The key observation is that:

A ≈ UU∗AVVT = ŨŨ
∗
AṼṼ

∗

And the “magic” is that Ũ, Ṽ can be obtained fromO(k) random measurements! (Halko et al. 2011).
Intuition:
▶ If we draw {Aω1,Aω2, . . . } measurements, they are all likely to be linearly independent
▶ Furthermore, if they are random, they all likely to land on the top subspace
▶ The two conditions above mean that we are fully covering the top subspace
▶ QR orthogonalization of our measurements yields Ũ
▶ Measurements from quasi-orthogonal iid noise are numerically stable and parallelizable
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Sketched SVD (Halko et al. 2011; Tropp et al. 2017)

Naively, all is left is to perform a k× k SVD:

A ≈ Ũ Ũ
∗
AṼ︸ ︷︷ ︸

C=Z1ΣZT2

Ṽ
∗

Nice! But this requires us to do a second, expensive pass over AṼ, which is unnecesary!

Y = AΩ = AṼṼ
∗
Ω

⇐⇒ AṼ︸︷︷︸
UΣZ∗

= Y(Ṽ
∗
Ω)† ⇐⇒ A = AṼṼ

∗
= UΣ (Z∗Ṽ

∗
)︸ ︷︷ ︸

V∗

This is very good!
▶ First we obtain thin outer matrices Ũ ∈m×α, Ṽ ∈n×α from random measurements and QR
▶ Then, decompose a small inner matrix C̃ := Φ∗AΨ ∈β×β and regroup matrices
▶ For single-pass, solve a well-conditioned least squares problem
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High overlap in DL
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▶ Scalable: Rank-1500 eigendecompositions on 12M-parameter networks
▶ Orders of magnitude higher for all observed splits, steps, rank sizes and problems
▶ Parameter inspection cheaply informs about curvature → training, pruning, UQ, analysis
▶ Still, spaces are far from identical ( k

D is small), so no direct mapping
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skerch: Sketched matrix decompositions for PyTorch
“I love it, 5/5!” — Diederik P. Kingma, probably talking about the Adam optimizer

https:∕∕github.com∕
andres-fr∕skerch
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Thank you!
Conclusions:

▶ Grassmannian metrics to compare arbitrary parameters and Hessian eigenspaces
▶ Sketched eigendecompositions to measure overlap at scale → skerch
▶ DL overlap orders-of-magnitude larger than baseline (albeit far from identical)
▶ Connecting expensive Hessian quantities with cheap parameter observations

Future work:

▶ Scalability: We also explore faster alternatives like perturbation-based and GGN
▶ Explaining why do we observe high overlap
▶ Leveraging this effect in downstream applications

How can this be useful to you?

▶ Insights on comparing spaces of seemingly unrelated quantities
▶ Scalable linear algebra
▶ DL Hessians: Optimization, pruning, UQ, learning theory
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Deep Learning and The Hessian
A tale as old as Geoffrey Hinton images from WikiMedia

▶ Dataset D := {(xd, yd)}Dn=1 ∈ (X×Y)D,
model fθ : X 3xn 7→ ŷn∈Y and loss function
l(yd, ŷd) : (Y×Y) 7→ R≥0

▶ Local loss landscape:
L(θ+δ) ≈ L̂(θ+δ) = 1

2δ
⊤Hθδ+∇⊤

θ δ+L(θ)

▶ Empirical risk minimization on training data
leads to update θt+1 = θt − H−1

θt
∇θt

Often, D and dim(θ) = N are very large → exact
updates unfeasible!

Speedup techniques also generalize well (Hardt
et al. 2016), but optimizers often present slow
convergence and hyperparameter instability.
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Note: Efficient and stable measurements
Recall we want to do measurements AΥ with random Υ. If we e.g. draw Gaussian noise, this is
prohibitively slow and inefficient! And what we really want is Υ to be uncorrelated with A, but ideally also
orthogonal to ensure numerical stability (Halko et al. 2011, p. 6.2). This is well characterized via the
Restricted Isometry Property (Candès 2008).

Luckily, there is a fast, competitive, stable and matrix-free way of doing random measurements!
The Scrambled Subsampled Randomized Fourier Transform (SSRFT) (Tropp et al. 2019, p. 3.2), related

to the Fast Johnson-Lindenstrauss Transform (FJLT), achieves exactly this:

SSRFT: RFΠFΠ′

Here, F is the Fourier transform, Π are signed random permutations and R is a random index picker.
Furthermore:
▶ It is matrix-free and leverages the FFT, requiring only O(n) memory and O(n log n) time
▶ It is composed by unitary projections, hence it is unitary
▶ As a bonus, the adjoint operation is also trivial
▶ Empirically, it has been shown to outperform Gaussian noise
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Matrix-Freedom
The forced ammendment

▶ Double-edged sword: Arbitrarily large, but
become implicit

▶ Satisfy linearity via mat-vec products:
A(c1v1 + c2v2) = c1Av1 + c2Av2

▶ Examples: differentiation, Laplace, Fourier,
convolution…

▶ This restricts the type of algorithms and
analysis available

# here is a matrix, and a matrix-free Hessian
mat = torch.randn(5, 5)
H = HessianLinearOperator(

dnn, loss_fn, params, dataloader)

# both support matrix-vector multiplications
w1 = mat @ v1
w2 = H @ v2

# and both are linear
w12 = H @ (a*v1 + b*v2)
assert w12 == a*(H @ v1) + b*(H @ v2)

# But H is not explicit in memory!
x1 = mat[3, 4:] # good
x2 = H[3, 4:] # not supported!

# instead, we have to run an HVP:
e3 = one_hot_vector(idx=3)
x2 = (e3 @ H)[4:]
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