

Understanding the Limits of Lifelong Knowledge Editing in LLMs ICML 25

Lukas Thede^{1,2}

Karsten Roth^{1,2}

Matthias

Zeynep Bethge¹

Akata^{2,4}

Tom Hartvigsen³

¹Tübingen AI Center & University of Tübingen, ²Helmholtz Munich & MCML, ³University of Virginia, ⁴Technical University of Munich

HELMHOLTZ UNIVERSITAT WUNICH

Knowledge Editing aims to edit particular factual inaccuracies within the knowledge of a foundation model while preserving unrelated knowledge.

Motivation

Knowledge Editing is usually motivated with the problem of **keeping LLMs up-todate** with current events. "... keep search models **updated with breaking news** and recently-generated user feedback." (MEMIT, Meng et al. 2023) "... large language model **trained in 2019** might assign higher probability to Theresa May than to Boris Johnson ..." (MEND, Mitchell et al. 2022)

"... Large Language Models (LLMs) notoriously hallucinate [17], perpetuate bias [11], and **factually decay** [8]." (GRACE, Hatrvigsen et al. 2023)

"... in order to **respond to changes in the world** [...] the ability to quickly make targeted updates to model behavior after deployment is desirable." (SERAC, Mitchell et al. 2022)

"keeping LLMs factually up-to-date"

Large-scale sequential updates of factual knowledge

?

How can we facilitate large-scale sequential updates to the factual knowledge of LLMs to keep up-to-date with an continually evolving world?

| 3

Required: Sequence of large batches of real world factual updates which cannot be solved sufficiently out of the box.

Take the **WikiData knowledge graph** as proxy for the "world knowledge".

Record "changes in world knowledge" as differences between knowledge graph snapshots.

Generate batches of factual QA updates based on the recorded changes.

| 4

WikiBigEdit: Dataset Generation

| 5

EBERHARD KARLS

TUBINGEN

HELMHOLTZ

MUNICI)

Update	Who is the sibling of Lady Zhurong?	Dailai Dongzhu	
Rephrase	Who is Lady Zhurong's sibling?	Dailai Dongzhu	
Personas	So, do you know who Lady Zhurong's sibling is?	Dailai Dongzhu	
Locality	Who is Bao Zhong's sibling?	Bao Xin	
Mhop	What is the country of citizenship of the sibling of Lady Zhurong?	Shu Han	
Update	Who is the author of the modern pentathlon?	Stasys Saparnis	
Rephrase	Who created the modern pentathlon?	Stasys Saparnis	
Personas	Arrr! Who be the scallywag penning the tales of the modern pentathlon, eh?	Stasys Saparnis	
Locality	Who is the author of "Lamentation"?	C. J. Sansom	
Mhop	Which country did the author of the modern pentathlon represent in sports?	Soviet Union	

| 6

WikiBigEdit: Comparison

Benchmark	Size	Date	Data Source	Task	Lifelong	Mhop
NQ	307K	2016	Google Search queries	Open-domain factual QA	X	X
Trivia QA	650K	Various	Trivia sources (web)	Trivia QA	×	X
MS MARCO	1M+	2016	Bing Search queries	Search queries	×	X
Hotpot QA	112K	2018	Wikipedia (curated)	Multi-hop QA	×	\checkmark
FEVER	185K	2018	Human-written claims	Fact verification	×	X
EX-FEVER	60K	2023	Hyperlinked Wikipedia	Multi-hop fact verification	×	\checkmark
ELI5	270K	2019	Reddit (ELI5 subreddit)	Long-form explanatory QA	×	X
WikiQA	3.5K	2015	Wikipedia	Factoid QA	×	X
DatedData	200K	Various	Varied web sources	Temporal QA (time-sensitive)	×	X
StreamingQA	150K	2007-2020	WMT news articles	Real-time event-based QA	×	X
ArchivalQA	530K	1985-2008	Historical news archives	Fact-based QA	×	X
Hello Fresh	30K	2023-2024	X and Wikipedia	Fact verification	×	X
CLARK	1.4K	2021-2024	Wikipedia	Knowledge-intensive QA	×	X
PopQA	14k	2023	Wikipedia, Wikidata	Fact-based QA	×	X
TemporalWiki	7K	2021	Wikipedia, Wikidata	Temporal QA (time-sensitive)	\checkmark	X
WikiFactDiff	20k	2021-2023	Wikidata	Factual cloze tests	×	×
WikiBigEdit	500K+	2024	Wikidata	Fact-based QA	\checkmark	\checkmark

 값目
 Large
 Scale

() Current

Real world 🕻 Lifelong

Q Mhop Eval

HELMHOLTZ

MUNICI

4

tübingen

| 7

WikiBigEdit: Takeaways

Timestep	Date Range	Samples	Unsolved
T1	2024/02/01 - 2024/02/20	26,790	80%
T2	2024/02/20 - 2024/03/01	32,901	84%
T3	2024/03/01 - 2024/03/20	54,802	85%
T4	2024/03/20 - 2024/04/01	43,554	85%
T5	2024/04/01 - 2024/05/01	121,754	81%
T6	2024/05/01 - 2024/06/01	101,550	82%
T7	2024/06/01 - 2024/06/20	69,251	82%
T8	2024/06/20 - 2024/07/01	55,433	82%
	Total	506,035	82%

Most changes captured within the benchmark can be considered as new facts due to being current and/or specific factual information.

Benchmark can be used to assess the sequential integration of new factual updates at scale.

Knowledge Editing Approaches

Evaluated Language Models

Model Modification Baselines

| 9

HELMHOLTZ UNIVERSITÄT MUNICIII TÜBINGEN

Comparison of knowledge editing techniques and other standards for model modification. Perso

- Provide the second state of the second stat
- -Q-At equivalent inference, simple continual finetuning consistently improves on editing techniques at scale.

Knowledge Editing: Local Modification

-Q

 Local modification approaches
 drop to zero accuracy after <250
 sequential edits as they break the model.

 -Q- Lifelong editing (i.e. through external memorization) does not break the model but converges to pre-edit performance within the first 10k edits.

HELMHOLTZ

MUNICH

HELMHOLTZ UNIVERSITAT MUNICI: TÜBINGEN

Knowledge editing can (currently) not facilitate large-scale sequential updates to the factual knowledge of LLMs.

Continual finetuning with weight merging provides a **strong alternative with at equal inference compute**.

Retrieval augmentation proves to be capable of incorporating large sequences of factual updates at increased inference cost.

Supplementary Material

WikiBigEdit: Analysis

HELMHOLTZ MUNICH

Temporal analysis

of the factual edits through timestamps extracted from the knowledge graph.

While most **facts are current**, the temporal consistency between batches does not necessarily hold consistently.

Quantification of question specificity through training corpus frequencies and Wikipedia page views.

Specificity levels of individual facts can be quantified. Training corpus frequencies provide better measures than page views.

Retrieval Augmentation

HELMHOLTZ MUNICH HUNICH

Retrieval Augmentation

Description: De

EML Munich

Retrieval Augmentation

HELMHOLTZ UNIVERSITAT MUNICH TÜBINGEN

Performance decreases as new facts are added to the memory, showing a limitation of RAG over long sequences of edits.

Retrieval augmentation proves to be capable of incorporating large sequences of factual updates.

- Performance decreases as evaluation questions move away from the original edit.
- RAG shows limited ability to reason upon the updated factual knowledge, caused by incorrect retrieval and inability to combine the retrieved facts.
- $\dot{\dot{Q}}$ Even with efficient solvers performance comes at higher inference cost.
- Performance on previous edits declines as more edits are integrated into the memory.

Continual Finetuning

Good initial performance for LoRA-FT followed by gradual decay. Merging allows to maintain performance level across updates.

Q Limited reasoning capabilities.

HELMHOLTZ

MUNICI-

Systematic spill-over for LoRA-FT.

500

| 20

I UBINGEN

Continual Finetuning

Consistent strong forgetting for LoRA-FT.
 LoRA-Merge shows no forgetting across metrics.

Topics of WikiBigEdit Update Batches

Figure 8. Topic word clouds for each timestep in the benchmark, illustrating the diversity of subjects, relations, and objects across different update intervals. Each row represents a component of the factual triplets (subjects, relations, and objects, respectively), while each column corresponds to a specific timestep. Notable patterns include a focus on specific events, such as "solar eclipse" in Timestep 7 (20240601–20240620), and varying distributions of topics across timesteps, emphasizing the richness and real-world relevance of the benchmark.

TUBINGE

HELMHOLTZ

MUNICI

Analysis on the Mhop Questions

Figure 9. Multi-hop (mhop) question accuracy analysis for five models (Llama 2, Llama 3, Gemma, Mistral, XGen). The top row shows the relationship between the accuracy of answering questions from the first (Hop 1) and second (Hop 2) parts of mhop factual tuples and overall mhop accuracy (color-coded). Hop 2 accuracy strongly correlates with mhop question accuracy, highlighting its critical role in multi-hop reasoning. The bottom row explores the relationship between specificity (measured via entity-specificity scores) and accuracy for Hop 1 and Hop 2. Higher mhop accuracy is generally linked to lower specificity, emphasizing the challenge of highly specific entities.

tujbinge

HELMHOLTZ

MUNICI-

Figure 15. Ablation results for the top-k parameter of the RAG baseline, evaluating update, rephrase, personas, mhop, and locality sets across 500k updates. Higher top-k values improve performance on rephrase, personas, and mhop sets due to increased retrieval coverage, while update set accuracy remains consistent across top-k values. The locality set shows marginal gains with higher top-k values, indicating reduced spillover effects. However, increasing top-k also leads to greater computational overhead, highlighting the trade-off between retrieval depth and efficiency.

Inference Time Trade-off

Figure 16. Trade-off between forward pass time (x-axis) and edit accuracy (y-axis) for RAG and LoRA across five models. Stars denote pre-edit performance, while post-edit performance for RAG and LoRA is represented by circles and crosses, respectively. RAG achieves higher edit accuracy at the cost of increased forward pass time, nearly doubling the average inference latency compared to LoRA. LoRA introduces minimal additional computational overhead while maintaining moderate accuracy improvements over the pre-edit baseline, highlighting its efficiency in resource-constrained settings.

HELMHOLTZ

MUNICI-

LoRA Rank Ablation

Figure 17. Performance of continual LoRA fine-tuning with high-rank (LoRA-64) and low-rank (LoRA-4) configurations across evaluation sets. The top row shows the mean batch accuracy for update, rephrase, personas, mhop, and locality sets, while the bottom row displays accuracy differences for individual timesteps. Low-rank configurations maintain competitive performance initially but degrade over time, while high-rank configurations show instability, including catastrophic failures in certain models.

LoRA Merging Alpha Ablation

Figure 18. Ablation study on the interpolation factor α in the LoRA-Merge setting, comparing $\alpha = 0.75$ (red) and $\alpha = 0.5$ (orange). The top row shows the mean batch accuracy for the update, rephrase, personas, mhop, and locality sets, while the bottom row depicts accuracy differences (in percentage points) across timesteps. Higher weight on the base model ($\alpha = 0.75$) provides more stable performance and mitigates forgetting, while equal weighting ($\alpha = 0.5$) achieves higher initial performance but leads to greater degradation, particularly on the mhop and locality sets. Bold lines represent average model performance, with lighter lines for individual models.

Figure 19. Update accuracy of knowledge editing approaches (MEMIT, R-ROME, ROME, and WISE) compared to LoRA-FT and RAG baselines across the first 500 updates (left) and the full first timestep (26k updates, right). Local modification methods (MEMIT, R-ROME, ROME) rapidly degrade within the first 250 updates, converging to near-zero performance. WISE initially performs on par with RAG for fewer than 500 updates but declines over the first 10k updates, converging to pre-update accuracy, highlighting its limitations in maintaining update accuracy for larger-scale knowledge integration.

HELMHOLTZ

MUNICI)

MEMIT Batch Size Ablation

Figure 20. Impact of batch size on MEMIT's performance for the first 10k updates of the WikiBigEdit benchmark using Llama-2. Larger batch sizes (e.g., 10k edits) prevent model collapse but result in lower update accuracy compared to the model's pre-edit performance. Smaller batch sizes (e.g., 1 or 1k edits) perform well initially but exhibit rapid degradation in subsequent updates, highlighting MEMIT's limitations for sequential, large-scale lifelong knowledge editing.

WISE Additional Results

Figure 21. Results of WISE on three language models (Llama-2-7B, Llama-3-8B, and Mistral-7B) for the first timestep of the WikiBigEdit benchmark. Each subplot shows mean batch accuracy for the update, rephrase, personas, mhop, and locality sets over the number of updates. Post-update performance (blue) converges to pre-update levels (gray) across all metrics, highlighting WISE's limitations in sustaining accuracy after large-scale updates.