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Abstract: We investigate reinforcement learning (RL) for privileged planning in
autonomous driving. State-of-the-art approaches for this task are rule-based, but
these methods do not scale to the long tail. RL, on the other hand, is scalable
and does not suffer from compounding errors like imitation learning. Contem-
porary RL approaches for driving use complex shaped rewards that sum multiple
individual rewards, e.g. progress, position, or orientation rewards. We show that
PPO fails to optimize a popular version of these rewards when the mini-batch
size is increased, which limits the scalability of these approaches. Instead, we
propose a new reward design based primarily on optimizing a single intuitive re-
ward term: route completion. Infractions are penalized by terminating the episode
or multiplicatively reducing route completion. We find that PPO scales well with
higher mini-batch sizes when trained with our simple reward, even improving per-
formance. Training with large mini-batch sizes enables efficient scaling via dis-
tributed data parallelism. We scale PPO to 300M samples in CARLA and 500M
samples in nuPlan with a single 8-GPU node. The resulting model achieves 64 DS
on the CARLA longest6 v2 benchmark, outperforming other RL methods with
more complex rewards by a large margin. Requiring only minimal adaptations
from its use in CARLA, the same method is the best learning-based approach on
nuPlan. It scores 91.3 in non-reactive and 90.6 in reactive traffic on the Vall4
benchmark while being an order of magnitude faster than prior work.
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MetricOpt: Learning to Optimize Black-Box Evaluation Metrics
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Tuning computer vision models with task rewards
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Abstract

Misalignment between model predictions and
intended usage can be detrimental for the de-
ployment of computer vision models. The issue
is exacerbated when the task involves complex
structured outputs, as it becomes harder to de-
sign procedures which address this misalignment.
In natural language processing, this is often ad-
dressed using reinforcement learning techniques
that align models with a task reward. We adopt
this approach and show its surprising effective-
ness across multiple computer vision tasks, such
as object detection, panoptic segmentation, col-
orization and image captioning. We believe this
approach has the potential to be widely useful
for better aligning models with a diverse range of
computer vision tasks.
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Before
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(a) Optimize mAP: 39 — 54, results in a much high recall and
learns box prediction confidences.

Before
After

(b) Optimize PQ: 43.1 — 46.1, removes many incoherent predic-
tions, especially for small-scale objects.




Main issue with standard supervised learning:
What we optimize # what we care about



What do we care about?

“Good results”

Bold Metrics*
What is a metric* m(CC, y) — R

What is a reward? T(S, a) —> R

Metrics*™ and rewards are the same thing

Reinforcement Learning (RL) allows us to optimize what we care about

*metric in the colloquial sense. | am talking about measures
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R = metric / reward func. Example: Classification wr M ES SRS
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S = Dataset v EEEEES0SNE
s = state / image ] e RO HEREN
- = action / label 1. Write down performance measure. = §§;=g§§==.

J(m) = E R(s,a)m(als)
(s a)eS

2. Compute the gradient that maximizes performance: “Policy gradient”

Vid(m) = — Z R(s,a)V m(als)
S| Sis



J = Performance 3. Use accuracy as reward
T = neural network

R = metric / reward func. 1
S = Dataset Vad(m) = — Z acc(s,a)V m(als)
s = state /image ’S’ (s,0)€S

a = action / label
a* = correct class /action

4, Simplify equation

V. J(T) Z V. (a*]s)

(s a*)eS
5. Optimize log probability instead (doesn’t change global optimum)

L, = — Z log w(a*|s) = —log H

(s,a*)ES (s,a*)ES
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Cross Entropy Negative Log-Likelihood

Cross-entropy is the policy gradient that maximizes accuracy!
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Youlknow, I'm some’thi_@g of a RL USER myself
’ fin.com : / 4 :
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So how did we apply this
idea in autonomous driving?



Take your driving metric and make it a reward

(3) Driving Score (DS): weighted average of the route
completion with infraction multiplier P;

1 N
DS = — Z R;P; (8)
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=@ Complex reward (prior) [14]

60 -

ﬁ . a ! 8
—>¥2 o
—— A 2
« :
on 40+
g
Reward =|RC|x (I I Penalty) —|Terminal = 3% yData-Scale
-
A 204 >

21 0

=oe - y

Time-to-Collision Comfort Lane Dist. 236 1024 16384
Mini-batch size (log).

Figure 1: Simple rewards scale with mini-batch size. Typical rewards in driving consist of com-

Also happens to scale much better than traditional reward shaping
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First time we beat Supervised Learning with RL in planning
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Non-Reactive Reactive :
Merod TyPe | cLst+ Col.t RCt | CLSt Col.t RC7 | Timel
Log Replay (LQR) | Human | 93.5 98.8 99.0 | 80.3 856  99.0 | -
PlanTF [8] IL 84.6 94.2 90.7 el 95.2 17.2 107
Diff. Planner [32] IL 89.6 95.9 94.2 82.7 93.1 85.9 138
CaRL (Ours) RL 913 97.4 94.4 90.6 97.1 91.3 14

Table 6: Performance on Vall4 (nuPlan)
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Do you have an unusual metric in your problem?

Maybe you should optimize it with RL.



