
Optimizing non-differentiable metrics
And applications in autonomous driving



Plan for Today

Bernhard Jaeger, Andreas Geiger: “An Invitation to Deep Reinforcement Learning”, Foundations and Trends® in Optimization 2024

Bernhard Jaeger, Daniel Dauner, Jens Beißwenger, Simon Gerstenecker, Kashyap Chitta, Andreas Geiger: “CaRL: Learning Scalable Planning Policies with Simple Rewards”, ArXiv 2025
2



3



 +Reinforcement Learning
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What do we care about?

“Good results”

Bold Metrics*

What is a metric* 

What is a reward?

Metrics* and rewards are the same thing

Reinforcement Learning (RL) allows us to optimize what we care about

8*metric in the colloquial sense. I am talking about measures



Example: Classification

2. Compute the gradient that maximizes performance: “Policy gradient”
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J  = Performance
π  = neural network
R  = metric / reward func.
S  = Dataset
s  = state / image
a  = action / label 1. Write down performance measure.



Cross-entropy is the policy gradient that maximizes accuracy!
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3. Use accuracy as reward

4. Simplify equation

J  = Performance
π  = neural network
R  = metric / reward func.
S  = Dataset
s  = state / image
a  = action / label
a* = correct class /action

5. Optimize log probability instead (doesn’t change global optimum)
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So how did we apply this 
idea in autonomous driving?



Take your driving metric and make it a reward

Also happens to scale much better than traditional reward shaping
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First time we beat Supervised Learning with RL in planning
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Do you have an unusual metric in your problem?

Maybe you should optimize it with RL.


