

Adversarially Robust CLIP Models Can Induce Better (Robust) Perceptual Metrics

Francesco Croce* Christian Schlarmann* Naman Deep Singh*

Matthias Hein

Perceptual Similarity Metrics

- Function $sim(x_1, x_2)$ that outputs a **similarity score** for a pair of images
- Encode similarity of images as perceived by humans
 - → Capture **high-level** semantics
- Can be building blocks for various downstream systems, e.g. content filtering

Perceptual Similarity Metrics

- Early approaches: **algorithmical** (*PSNR*, *SSIM*)
 - → unable to capture high-level semantics
- Nowadays (LPIPS [1]): With **vision encoder** ϕ , compute the similarity of images as

$$extstyle ext{sim}(oldsymbol{x}_1,oldsymbol{x}_2) = \left\langle rac{\phi(oldsymbol{x}_1)}{\|\phi(oldsymbol{x}_1)\|_2}, rac{\phi(oldsymbol{x}_2)}{\|\phi(oldsymbol{x}_2)\|_2}
ight
angle$$

ullet ϕ could be derived e.g. from CLIP, DINO

NIGHTS Dataset

Two Alternatives Forced Choice (2AFC) Task

"Is 1 or 2 more similar to Reference?"

Quantifies alignment with human perception

Perceptual Metrics are Vulnerable

Perceptual Metrics are Vulnerable

Goal: adversarially robust perceptual metric with high clean performance

Mitigation: Use robust vision encoders

- Adversarially robust vision encoders could yield robust perceptual metrics
- Our robust fine-tuning scheme from prior work: FARE [1]

$$L_{\text{FARE}}(\phi, x) = \max_{\|z - x\|_{\infty} \le \varepsilon} \|\phi(z) - \phi_{\text{Org}}(x)\|_{2}^{2}$$

Ensures stability of embeddings under adversarial perturbation

- Fine-tune **only on ImageNet** (without labels), ℓ_{∞} radius ε = 4/255.
- Models: CLIP ConvNeXt-B (R-CLIP_F) and DINO ViT-B/16 (R-DINO_F)

Perceptual Metric Evaluation

Perceptual Metric Evaluation

Perceptual Metric Evaluation

Content Filtering

- Goal: Automatic system that filters unsafe images
- Given a query image, determine whether it is unsafe (U) or safe (S)
- Can be solved with perceptual metrics via retrieval:
 - \rightarrow is the query image more similar to **U** or **S** images?

Attack formulation:

- Maximize similarity of unsafe query x to small set Y of safe images
- No knowledge of retrieval pool required → realistic scenario

Robust Content Filtering: Results

Robust Content Filtering: Results

- → SOTA robustness in this safety critical task
- → Competitive clean performance
- → Clean accuracy improves slightly for CLIP, decreases slightly for DINO

What images are considered similar by the perceptual metrics?

- **Invert** embedding $\phi(x)$
- Solve

$$\mathop{\arg\max}_{\hat{\boldsymbol{x}} \in [0,1]^d} \quad \mathop{\sin(\hat{\boldsymbol{x}}, \boldsymbol{x})} = \mathop{\arg\max}_{\hat{\boldsymbol{x}} \in [0,1]^d} \quad \cos(\phi(\hat{\boldsymbol{x}}), \phi(\boldsymbol{x}))$$

- → Solution is considered similar by the perceptual metric
 - Solve via gradient based optimization, starting with gray image
 - Produces adversarial noise for clean models
 - Robust models are known to have interpretable gradients

Can also maximize similarity to **text embedding** $\psi(t)$:

$$\mathop{\arg\max}_{\boldsymbol{x}\in[0,1]^d} \mathop{\sin(\boldsymbol{x},\boldsymbol{t})} = \mathop{\arg\max}_{\boldsymbol{x}\in[0,1]^d} \cos(\phi(\boldsymbol{x}),\psi(\boldsymbol{t}))$$

→ extract concepts encoded by CLIP

Conclusion

Robust vision encoders yield zero-shot perceptual metrics that

- achieve SOTA robustness
- improve clean performance over base models
- exhibit interpretable features

Code & Models available:

