LLMs Are Zero-Shot Problem Solvers
— Just Like Modern Computers
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What’s so special about LLMs?
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e Scaling Laws?

* Not surprising

Scaling laws for neural language models, arXiv preprint arXiv:2001.08361. 2020



What’s so special about LLMs?

Language Models are Unsupervised Multitask Learners
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 Trained on LM task, zero-shot other tasks
* Not predicted from the smaller scale models

 Emergence? (Not that special)

Language models are unsupervised multitask learners, OpenAl blog. 2019.



Emergence Is not a unique phenomenon!

* Discussed in physics & biology

* “More Is Different”

4 August 1972, Volume 177, Number 4047

More Is Different

Broken symmetry and the nature of

the hierarchical structure of science.

The reductionist hypothesis may still
be a topic for controversy among phi-
losophers, but among the great majority
of active scientists I think it is accepted

P. W. Anderson

planation of phenomena in terms of
known fundamental laws. As always, dis-
tinctions of this kind are not unambiguous,
but they are clear in most cases. Solid
state nhvsics. nlasma nhvsics. and nerhans

SCIENCE

less relevance they seem to have to the
very real problems of the rest of sci-
ence, much less to those of society.

The constructionist hypothesis breaks
down when confronted with the twin
difficulties of scale and complexity. The
behavior of large and complex aggre-
gates of elementary particles, it turns
out, is not to be understood in terms
of a simple extrapolation of the prop-
erties of a few particles. Instead, at
each level of complexity entirely new
properties appear, and the understand-
ing of the new behaviors requires re-
search which I think is as fundamental
in its nature as any other. That is, it
seems to me that one may array the
sciences roughly linearly in a hierarchy,
according to the idea: The elementary
entities of science X obey the laws of
science Y.




Emergence Is not a unique phenomenon!

* Also not new in machine learning!

e Neuron -> Network

 Hopfield Networks

Proc. Natl. Acad. Sci. USA
Vol. 79, pp. 2554-2558, April 1982
Biophysics

Neural networks and physical systems with emergent collective

computational abilities

(associative memory/parallel processing/ categorization/content-addressable memory/fail-soft devices)

J. J. HOPFIELD

Division of Chemistry and Biology, California Institute of Technology, Pasadena, California 91125; and Bell Laboratories, Murray Hill, New Jersey 07974

Contributed by John ] . Hopfield, January 15, 1982

ABSTRACT  Computational properties of use to biological or-
ganisms or to the construction of computers can emerge as col-
lective properties of systems having a large number of simple
equnvalent components (or neurons) The physncal meanmg of con-

tegrated circuits. The collechve propertles of thls model produce
a content-addressable memory which correctly yields an entire
memory from any subpart of suffncnent size. The algonthm for the

parallel processing. Addlhonal emergent co]lectlve propertnes in-
clude some capacity for generalization, familiarity recognition,
categorization, error correction, and time sequence retention.
The collective properties are only weakly sensitive to details of the
modeling or the failure of individual devices.

calized content-addressable memory or categorizer using ex-
tensive asynchronous parallel processing.

The general content-addressable memory of a physical
system

Suppose that an item stored in memory is “H. A. Kramers &
G. H. Wannier Phys. Rev. 60, 252 (1941).” A general content-
addressable memory would be capable of retrieving this entire
memory item on the basis of sufficient partial information. The
input “& Wannier, (1941)” might suffice. An ideal memory
could deal with errors and retrieve this reference even from the
input “Vannier, (1941)”. In computers, only relatively simple
forms of content-addressable memory have been made in hard-
ware (10, 11). Sophisticated ideas like error correction in ac-
cessing information are usually introduced as software (10).

There are classes of physical systems whose spontaneous be-
havinr can he nced ac a form of general (and error-correcting)




Actually, Modern Computer As Well

e Also zero-shot solver

* Not built for any specific program but as general purpose machines



A Tale of Two Zero-Shot Problem Solvers
Modern Computers (1936)

* |dea traced back to Alan Turing

* Universal Turing Machine
(l.e., zero-shot)




A Tale of Two Zero-Shot Problem Solvers
Modern Computers (1939)
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A Tale of Two Zero-Shot Problem Solvers
Modern Computers (1941-1945)

» Hardwired Programmable Computer , . — &2 %%

.....

« ENIAC b e e

e (Collection of different arithmetic units and —
switches . =

Programmers Betty Jean Jennings =
(left) and Fran Bilas (right) operating

 Reprogram -> Manual Rewire ENIAC's main control panel at the
Moore School of Electrical
* Program is still part of the hardware Engineering, ¢. 1945 (U.S. Army photo

from the archives of the ARL Technical
Library)




A Tale of Two Zero-Shot Problem Solvers
Modern Computers (1945)

« Stored-Program Computer
+ EDVAC

« von Neumann architecture o.o
 Represent programs as data rather than as i v

wiring setups

* Allowed computers to read and solve ' 3
arbitrary programs for which they were not e PR
set up by wiring I




A Tale of Two Zero-Shot Problem Solvers

Large Language Models (2002)

o Simplest Component (logic gate of LLMs
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Journal of Machine Learning Research 3 (2003) 1137-1155 Submitted 4/02; Published 2/03

A Neural Probabilistic Language Model

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC @IRO.UMONTREAL.CA

Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

Editors: Jaz Kandola, Thomas Hofmann, Tomaso Poggio and John Shawe-Taylor

Abstract

A goal of statistical language modeling is to learn the joint probability function of sequences of
words in a language. This is intrinsically difficult because of the curse of dimensionality: a word
sequence on which the model will be tested is likely to be different from all the word sequences seen
during training. Traditional but very successful approaches based on n-grams obtain generalization
by concatenating very short overlapping sequences seen in the training set. We propose to fight the
curse of dimensionality by learning a distributed representation for words which allows each
training sentence to inform the model about an exponential number of semantically neighboring
sentences. The model learns simultaneously (1) a distributed representation for each word along
with (2) the probability function for word sequences, expressed in terms of these representations.
Generalization is obtained because a sequence of words that has never been seen before gets high
probability if it is made of words that are similar (in the sense of having a nearby representation) to
words forming an already seen sentence. Training such large models (with millions of parameters)
within a reasonable time is itself a significant challenge. We report on experiments using neural
networks for the probability function, showing on two text corpora that the proposed approach
significantly improves on state-of-the-art n-gram models, and that the proposed approach allows to
take advantage of longer contexts.

Keywords: Statistical language modeling, artificial neural networks, distributed representation,
curse of dimensionality




 One model for one NLP task, e.g.:

» p(answer | question

» p(Chinese | English
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A Tale of Two Zero-Shot Problem Solvers
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A Tale of Two Zero-Shot Problem Solvers
Large Language Models (2017)

One Model To Learn Them All

Eukasz Kaiser Aidan N. Gomez* Noam Shazeer
Google Brain University of Toronto Google Brain
lukaszkaiser@google.com aidan@cs.toronto.edu noam@google.com
Ashish Vaswani Niki Parmar Llion Jones Jakob Uszkoreit
Google Brain Google Research Google Research Google Research

avaswani@google.com nikip@google.com 1llion@google.com usz@google.com

Abstract

o Solved task specified by a special tag,
e.g., <QA>, <MT>

Deep learning yields great results across many fields, from speech recognition,
image classification, to translation. But for each problem, getting a deep model
to work well involves research into the architecture and a long period of tuning.
We present a single model that yields good results on a number of problems span-
ning multiple domains. In particular, this single model is trained concurrently on
ImageNet, multiple translation tasks, image captioning (COCO dataset), a speech
recognition corpus, and an English parsing task. Our model architecture incor-
porates building blocks from multiple domains. It contains convolutional layers,
an attention mechanism, and sparsely-gated layers. Each of these computational
blocks is crucial for a subset of the tasks we train on. Interestingly, even if a block
is not crucial for a task, we observe that adding it never hurts performance and
in most cases improves it on all tasks. We also show that tasks with less data
benefit largely from joint training with other tasks, while performance on large
tasks degrades only slightly if at all. [|

* Dsk(output | input)

1 Introduction

Recent successes of deep neural networks have spanned many domains, from computer vision [13] to
speech recognition [8] and many other tasks. Convolutional networks excel at tasks related to vision,
while recurrent neural networks have proven successful at natural language processing tasks, e.g., at
machine translation [27, 3, 4]. But in each case, the network was designed and tuned specifically for
the problem at hand. This limits the impact of deep learning, as this effort needs to be repeated for
each new task. It is also very different from the general nature of the human brain, which is able to
learn many different tasks and benefit from transfer learning. The natural question arises:

Can we create a unified deep learning model to solve tasks across multiple domains?

The question about multi-task models has been studied in many papers in the deep learning literature.
Natural language processing models have been shown to benefit from a multi-task approach a long
time ago [6], and recently machine translation models have even been shown to exhibit zero-shot
learning when trained on multiple langauges [18]. Speech recognition has also been shown to benefit
from multi-task training [24], as have some vision problems, such as facial landmark detection [31].
But all these models are trained on other tasks from the same domain: translation tasks are trained
with other translation tasks, vision tasks with other vision tasks, speech tasks with other speech
tasks. Multi-modal learning has been shown to improve learned representations in the unsupervised

arX1v:1706.05137v1 [cs.LG] 16 Jun 2017

*Work performed while at Google Brain.
Code available at https://github.com/tensorflow/tensor2tensor




 Task, Input, and Output represented in

the same format

l.e., natural language
- p(output | task, input

« Cf. von Neumann architecture

arX1v:1806.08730v1 [cs.CL] 20 Jun 2018

A Tale of Two Zero-Shot Problem Solvers
Large Language Models (2018)

The Natural Language Decathlon:
Multitask Learning as Question Answering

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, Richard Socher
Salesforce Research
{bmccann,nkeskar,cxiong,rsocher}@salesforce.com

Abstract

Deep learning has improved performance on many natural language processing
(NLP) tasks individually. However, general NLP models cannot emerge within a
paradigm that focuses on the particularities of a single metric, dataset, and task.
We introduce the Natural Language Decathlon (decaNLP), a challenge that spans
ten tasks: question answering, machine translation, summarization, natural lan-
guage inference, sentiment analysis, semantic role labeling, relation extraction,
goal-oriented dialogue, semantic parsing, and commonsense pronoun resolution.
We cast all tasks as question answering over a context. Furthermore, we present a
new multitask question answering network (MQAN) that jointly learns all tasks in
decaNLP without any task-specific modules or parameters. MQAN shows improve-
ments in transfer learning for machine translation and named entity recognition,
domain adaptation for sentiment analysis and natural language inference, and
zero-shot capabilities for text classification. We demonstrate that the MQAN’s
multi-pointer-generator decoder is key to this success and that performance further
improves with an anti-curriculum training strategy. Though designed for decaNLP,
MQAN also achieves state of the art results on the WikiSQL semantic parsing task
in the single-task setting. We also release code for procuring and processing data,
training and evaluating models, and reproducing all experiments for decaNLP.

1 Introduction

We introduce the Natural Language Decathlon (decaNLP) in order to explore models that generalize
to many different kinds of NLP tasks. decaNLP encourages a single model to simultaneously optimize
for ten tasks: question answering, machine translation, document summarization, semantic parsing,
sentiment analysis, natural language inference, semantic role labeling, relation extraction, goal
oriented dialogue, and pronoun resolution.

We frame all tasks as question answering [Kumar et al., 2016] by allowing task specification to
take the form of a natural language question ¢: all inputs have a context, question, and answer
(Fig. 1). Traditionally, NLP examples have inputs  and outputs y, and the underlying task ¢ is
provided through explicit modeling constraints. Meta-learning approaches include ¢ as additional
input [Schmidhuber, 1987, Thrun and Pratt, 1998, Thrun, 1998, Vilalta and Drissi, 2002]. Our
approach does not use a single representation for any ¢, but instead uses natural language questions
that provide descriptions for underlying tasks. This allows single models to effectively multitask
and makes them more suitable as pretrained models for transfer learning and meta-learning: natural
language questions allow a model to generalize to completely new tasks through different but related
task descriptions.

We provide a set of baselines for decaNLP that combine the basics of sequence-to-sequence learn-
ing [Sutskever et al., 2014, Bahdanau et al., 2014, Luong et al., 2015b] with pointer networks [Vinyals
et al., 2015, Merity et al., 2017, Giilgehre et al., 2016, Gu et al., 2016, Nallapati et al., 2016], ad-

Preprint. Work in progress.




A Tale of Two Zero-Shot Problem Solvers

Large Language Models (2019)

 Language Modeling (GPT-2)

» p(response | prompt)

Language Models are Unsupervised Multitask Learners

Alec Radford *! Jeffrey Wu*! Rewon Child! David Luan! Dario Amodei ' Ilya Sutskever * !

Abstract

Natural language processing tasks, such as ques-
tion answering, machine translation, reading com-
prehension, and summarization, are typically
approached with supervised learning on task-

specific datasets. We demonstrate that language
models begin to learn these tasks without any ex-
plicit supervision when trained on a new dataset
of millions of webpages called WebText. When

swers generated by the language model reach 55
F1 on the CoQA dataset - matching or exceeding
the performance of 3 out of 4 baseline systems
without using the 127,000+ training examples.
The capacity of the language model is essential
to the success of zero-shot task transfer and in-
creasing it improves performance in a log-linear
fashion across tasks. Our largest model, GPT-2,
is a 1.5B parameter Transformer that achieves
state of the art results on 7 out of 8 tested lan-
guage modeling datasets in a zero-shot setting
but still underfits WebText. Samples from the
model reflect these improvements and contain co-
herent paragraphs of text. These findings suggest
a promising path towards building language pro-
cessing systems which learn to perform tasks from
their naturally occurring demonstrations.

1. Introduction

Machine learning systems now excel (in expectation) at
tasks they are trained for by using a combination of large
datasets, high-capacity models, and supervised learning
(Krizhevsky et al., 2012) (Sutskever et al., 2014) (Amodei
et al.,, 2016). Yet these systems are brittle and sensitive to
slight changes in the data distribution (Recht et al., 2018)
and task specification (Kirkpatrick et al., 2017). Current sys-
tems are better characterized as narrow experts rather than

“"Equal contribution 'OpenAl, San Francisco, Califor-
nia, United States. Correspondence to: Alec Radford
<alec@openai.com>.

competent generalists. We would like to move towards more
general systems which can perform many tasks — eventually
without the need to manually create and label a training
dataset for each one.

The dominant approach to creating ML systems is to col-
lect a dataset of training examples demonstrating correct
behavior for a desired task, train a system to imitate these
behaviors, and then test its performance on independent
and identically distributed (IID) held-out examples. This
has served well to make progress on narrow experts. But
the often erratic behavior of captioning models (Lake et al.,
2017), reading comprehension systems (Jia & Liang, 2017),
and image classifiers (Alcorn et al., 2018) on the diversity
and variety of possible inputs highlights some of the short-
comings of this approach.

Our suspicion is that the prevalence of single task training
on single domain datasets is a major contributor to the lack
of generalization observed in current systems. Progress
towards robust systems with current architectures is likely
to require training and measuring performance on a wide
range of domains and tasks. Recently, several benchmarks
have been proposed such as GLUE (Wang et al., 2018) and
decaNLP (McCann et al., 2018) to begin studying this.

Multitask learning (Caruana, 1997) is a promising frame-
work for improving general performance. However, mul-
titask training in NLP is still nascent. Recent work re-
ports modest performance improvements (Yogatama et al.,
2019) and the two most ambitious efforts to date have
trained on a total of 10 and 17 (dataset, objective)
pairs respectively (McCann et al., 2018) (Bowman et al.,
2018). From a meta-learning perspective, each (dataset,
objective) pair is a single training example sampled
from the distribution of datasets and objectives. Current
ML systems need hundreds to thousands of examples to
induce functions which generalize well. This suggests that
multitask training many need just as many effective training
pairs to realize its promise with current approaches. It will
be very difficult to continue to scale the creation of datasets
and the design of objectives to the degree that may be re-
quired to brute force our way there with current techniques.
This motivates exploring additional setups for performing
multitask learning.

The current best performing systems on language tasks




Connecting the Dots
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Connecting the Dots
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Connecting the Dots

=) computer

)

J=zaaaasl

Special Purpose
Computer

Qe LLM

physically constructed
for a fixed program

p(answer|question)

trained for a fixed
NLP task (e.g., QA)

v

Hardwired
Programmable
Computer

\4

executed program
defined by wiring

ptask(OUtPUt|inPUt)

solved task specified
by a special tag

|

!

Stored-Program
Computer

program & data
represented in the same
format (bit strings)

p(output|task, input)

task, input, and output
represented in the same
format (natural language)

v

zero-shot
problem solvers

p(A|P)

prompt P not seen
at training time

(c) Paths towards universality




Fundamental Difference

o LLMs:
 More accessible but expensive due to informal reasoning
 Ambiguous and difficult to describe a problem precisely
 Computers:
A world that is formally structured and logically well-defined

 Required to learn these formal languages in order to gain full access to
computer’s problem solving abillity



Lessons to Learn

Finding 1
The zero-shot problem solving ability only emerges when we combine a powerful compute

architecture with a suitable problem translator.

 Computational ability is not as rare a property as we might think.

 E.g., Dropping a ball onto a surface



Lessons to Learn

Finding 2
Minimizing the gap between the language model of LLMs and the internal language model of a
user is at the core of unlocking the full problem solving ability of LLMs.
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Verbalized Computing?
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