PENEX: AdaBoost-Inspired
Neural Network Regularization
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What loss do you use to train your classitier?*

*Yes, an LLM qualifies as a classifier
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What is AdaBoost? ﬂ

MAX PLANCK INSTITUTE G,
TTTTTTTTTTTTTTTTTTTTT “It‘h



Weak learner (.

) > 2
TnV \F‘alse

(Class A] Class B]




Constructing a

(x(j)Zt'gJ [X(])>t? [X(n>t?

True False . True False True False

C e e
lo

MAX PLANCK INSTITUTE g

FOR INTELLIGENT SYSTEMS >



Optimization objective: exponential loss
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g, greedily minimize

Elexp{—yf®}], ye{-1,1}

MAX PLANCK INSTITUTE 0 Breiman, Leo. "Prediction Games and Arcing Algorithms." Neural Computation 11.7 (1999): 1493-1517.
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AdaBoost is resilient to “overfitting”
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“[AdaBoost with trees is| the best off-the-shelf
classifier in the world.”

- Leo Breiman

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. "Additive logistic regression: a statistical view of

MAX PLANCK INSTITUTE boosting. The Annals of Statistics 28.2 (2000): 337-407.
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Can we translate the “AdaBoost magic” to
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Multiclass exponential loss

K
E[exp {—(K— 1)_1f(y)(x)}] subject to Zf(j)(x) =0, Vx.
=1

\ )\ J )
| |
exponential loss prevents logits from
diverging

Constraints @

MAX PLANCK INSTITUTE (47" Zhu, Ji, et al. "Multi-class adaboost." Statistics and its Interface 2.3 (2009): 349-360. 10
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Penalized exponential loss (PENEX)

K

Bl exp {~afV0} + p Y exp{fV}
\ ) LJ=L )
| |
exponential loss prevents logits from
diverging

No constraints! e'
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... and it works @&

training loss:

PENEX

—— label smoothing

Cross-entropy

validation score
(negative cross-entropy)
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PENEX often works better than other methods

Method || Metric || CIFAR-10 | Noisy CIFAR-10 | CIFAR-100 PathMNIST BBC News
ACC 0.785+0.004 0.724+0.004 0.443 +0.004 0.826 +0.004 0.967 +0.007
CE -ECE —0.162£0.003 —0.179+0.003 —0.287+0.003 —0.151£0.004 —0.032+0.006
-CE —1.004£0.024 —1.125+0.019 —3.072+0.034 —2.018+0.130 —0.109£0.024
-BRIER —0.346 £ 0.006 —0.424 £ 0.006 —0.794 £ 0.006 —0.300£0.007 —0.051£0.011

ACC 0.789+0.004 0.747+£0.004 0.451+0.005 0.829+0.004 0.970+0.006
label -ECE —0.1124+0.002 —0.183+0.003 —0.147+0.002 | —0.109+0.002 —0.033+0.006
smoothing -CE —0.657 +£0.011 —0.889+0.008 —2.2924+0.019 —0.589+0.012 | —0.1154+0.022
-BRIER —0.300+0.005 —0.384 +0.004 —0.692 £+ 0.004 —0.2554+0.005 —0.049£0.010

ACC 0.786£0.004 0.733+0.004 0.449+0.006 0.828+£0.004 0.974£0.006
confidence -ECE —0.130+0.002 —0.149£0.003 —0.1524+0.002 —0.110£0.003 —0.050+0.005
penalty -CE —0.731+0.015 —0.866 +0.009 —2.2544+0.018 —0.917+0.047 —0.094£0.015
-BRIER —0.317£0.005 —0.385+0.004 —0.695+0.005 —0.262 +0.005 —0.042+0.008

ACC 0.778 £0.004 0.708 +0.004 0.428 + 0.005 0.803+£0.004 0.970£0.006
focal -ECE —0.117£0.002 —0.165+0.003 —0.161£0.003 —0.112+0.003 —0.051£0.005
loss -CE —0.661+0.010 —0.905+0.008 —2.341+0.022 —0.93940.050 —0.092+0.014
-BRIER —0.313+0.005 —0.423£0.004 —0.723£0.005 —0.291 £0.006 —0.042+0.008

ACC 0.7934+0.004 0.766 £0.004 0.4602+0.005 0.833+0.004 0.968 +0.006
PENEX -ECE —0.109+0.002 | —0.131+£0.002 | —0.1474+0.003 | —0.100=+0.003 —0.034 £+ 0.006
B— -CE —0.646+£0.012 | —0.716+0.009 | —2.140+0.018 —1.200£0.089 —0.124+0.025
-BRIER —0.299+£0.005 | —0.332+0.004 | —0.685£0.004 | —0.251 +0.006 —0.055+0.011
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Theoretical properties of PENEX
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Fisher consistency

“When applied to the whole population the
derived statistic should be equal to the
parameter.”

- Ronald A. Fisher

Fisher, Ronald A. "On the Mathematical Foundations of Theoretical Statistics." Philosophical transactions of the Royal 5

MAX PLANCK INSTITUTE ~”
Society of London. Series A, containing papers of a mathematical or physical character 222.594-604 (1922): 309-368.
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PENEX is Fisher consistent

K
Bl exp{—afVm} + p D exp{ Y} |
j=1
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PENEX is Fisher consistent

K

Elexp{-afY)} + p D exp{fV0} |

=

Minimize w.r.t. f —>f*

P(y|x) o< exp{(1+a)fP'(x)}, vx
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Common regularizers fail Fisher consistency

Lee(f) + AQ(f)

Encompasses label smoothing, L2 regularization,
confidence penalty, ...

Intuition: Regularization term €)(f) pushes the solution off
the Bayes-optimal predictor
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O%PENEX(f)
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(nice car with two seats
and two extra seats
mounted on top)
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So why does it work?
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“Insight must precede application.”
- Max Planck

https://www.mpi-cbg.de/research/our-research/basic-research
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Implicit margin maximization

Cross-Entropy PENEX SVM (RBF Kernel)
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PENEX provably maximizes margins

Defining the margin for example (X, ) as

ms(x,y) = fY(x) — max;y, fV)(x),

we show that

P(mg(x,y)<7) < e? w1 p~ w1 Bl Lopnex(f @, p)].

Extension of an earlier result: Schapire, Robert E., et al. "Boosting the margin: A new explanation for the

MAX PLANCK INSTITUTE ."""’:
effectiveness of voting methods." The annals of statistics 26.5 (1998): 1651-1686.
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Key take-aways

* The “AdaBoost magic” can be translated to NNs
* Regularization is not at odds with Fisher consistency
 PENEX implicitly maximizes margins

* Let’s question the very foundations!

E-Mail: kkladny@tuebingen.mpg.de
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