

PENEX: AdaBoost-Inspired Neural Network Regularization

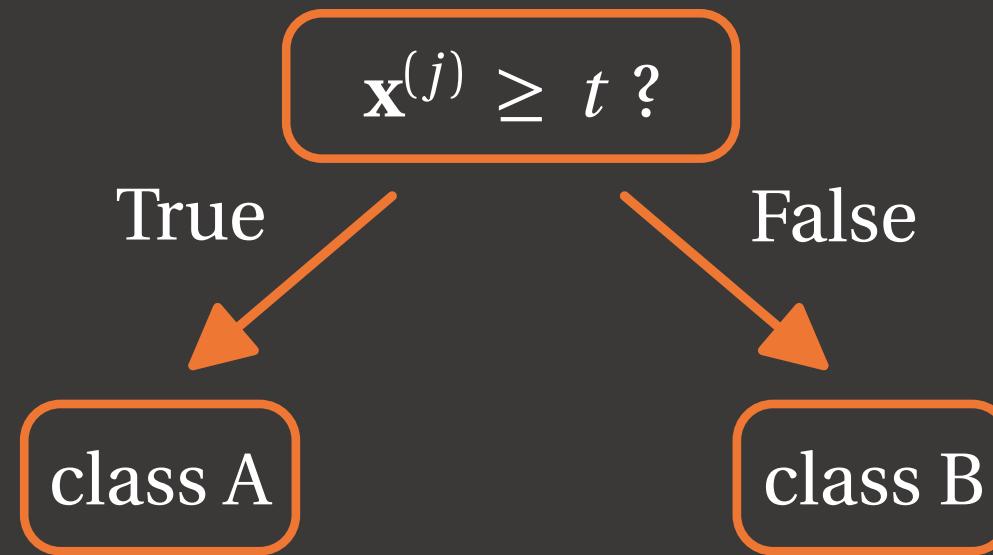
Friday Talk

Klaus-Rudolf Kladny, Bernhard Schölkopf, Michael Muehlebach

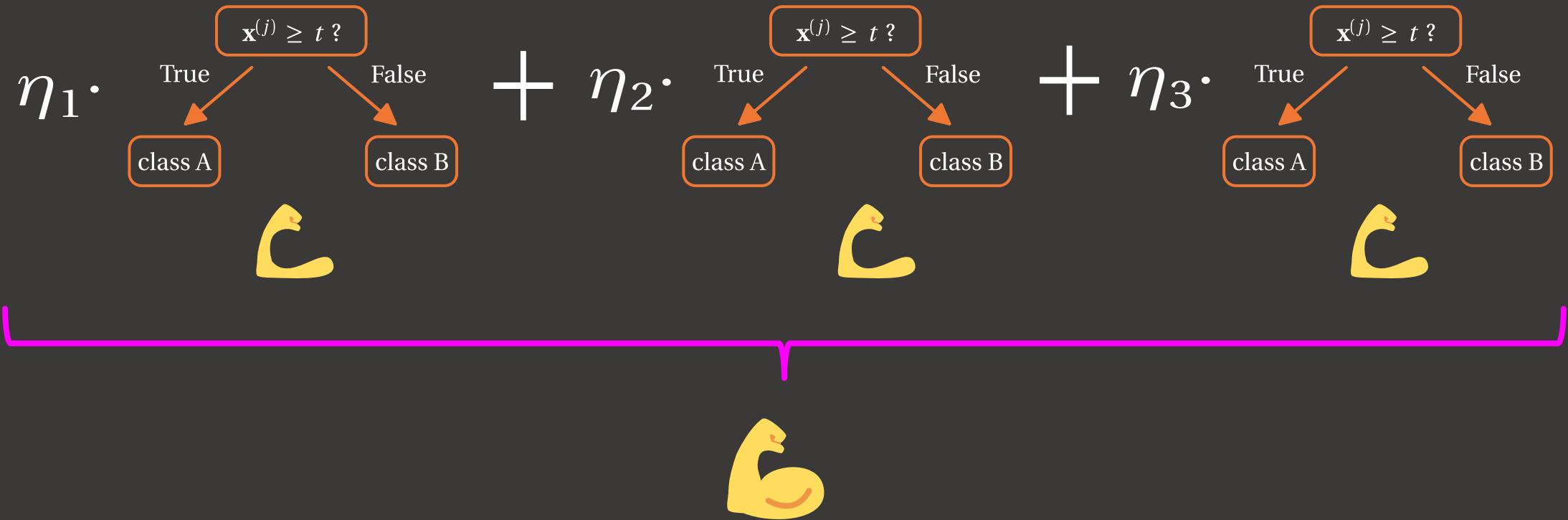
What loss do you use to train your classifier?*

What is AdaBoost?

Weak learner



Constructing a **strong** learner



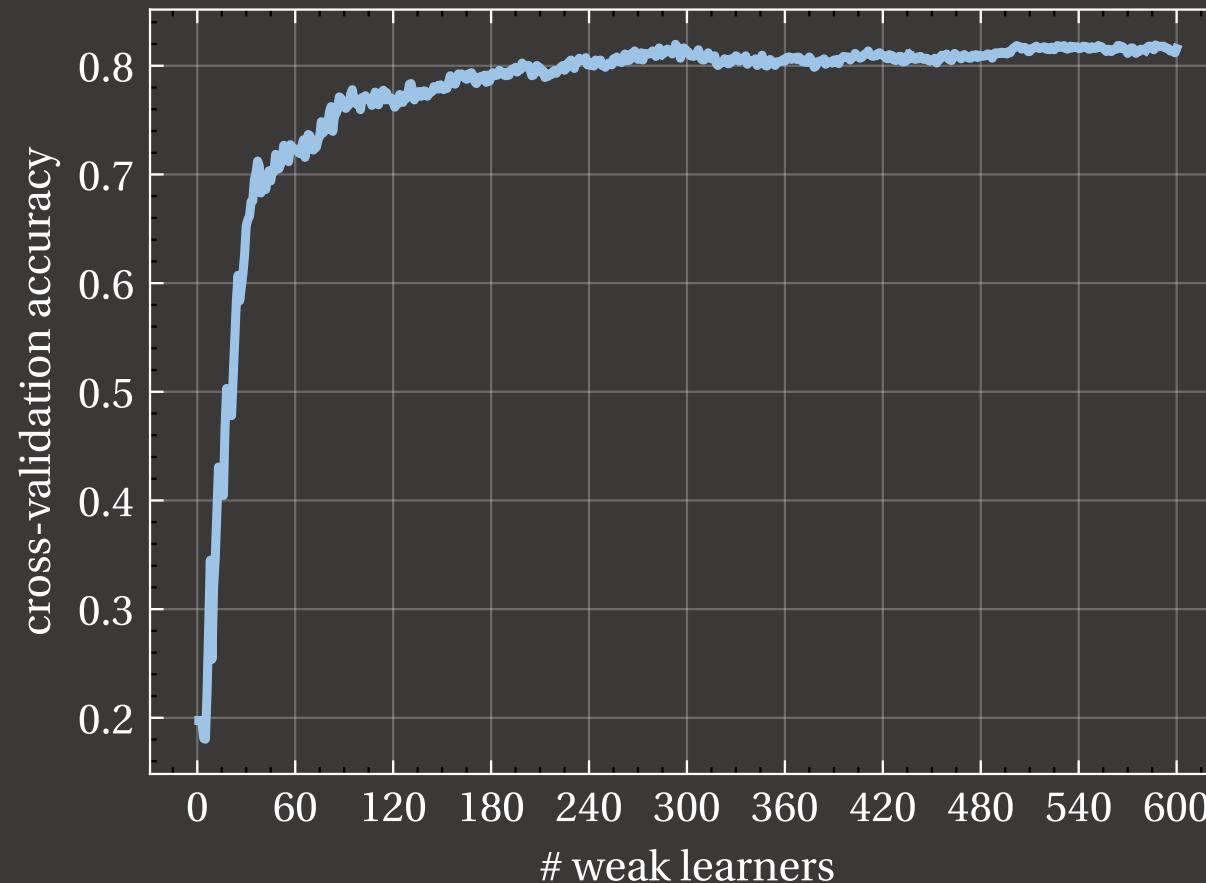
Optimization objective: exponential loss

$$\textcolor{violet}{f}(\mathbf{x}) = \sum_{i=1}^N \eta_i \textcolor{brown}{g}_i(\mathbf{x})$$

$\textcolor{brown}{g}_i$ greedily minimize

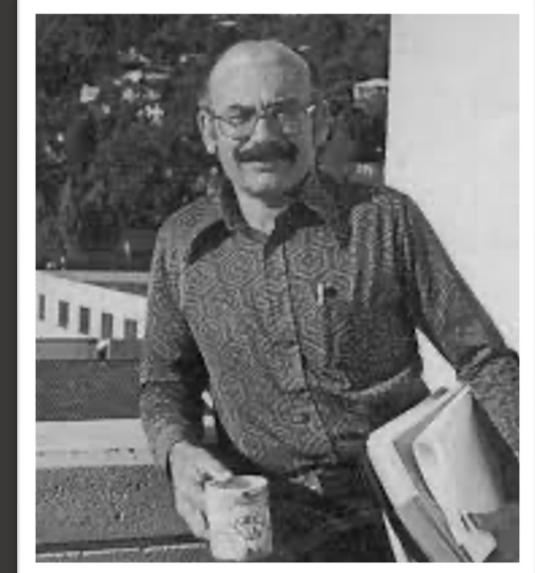
$$\hat{\mathbb{E}}[\exp\{-yf(\mathbf{x})\}], \quad y \in \{-1, 1\}$$

AdaBoost is resilient to “overfitting”



“[AdaBoost with trees is] the best off-the-shelf classifier in the world.”

- Leo Breiman



Can we translate the “AdaBoost magic” to neural networks?

Multiclass exponential loss

Constraints

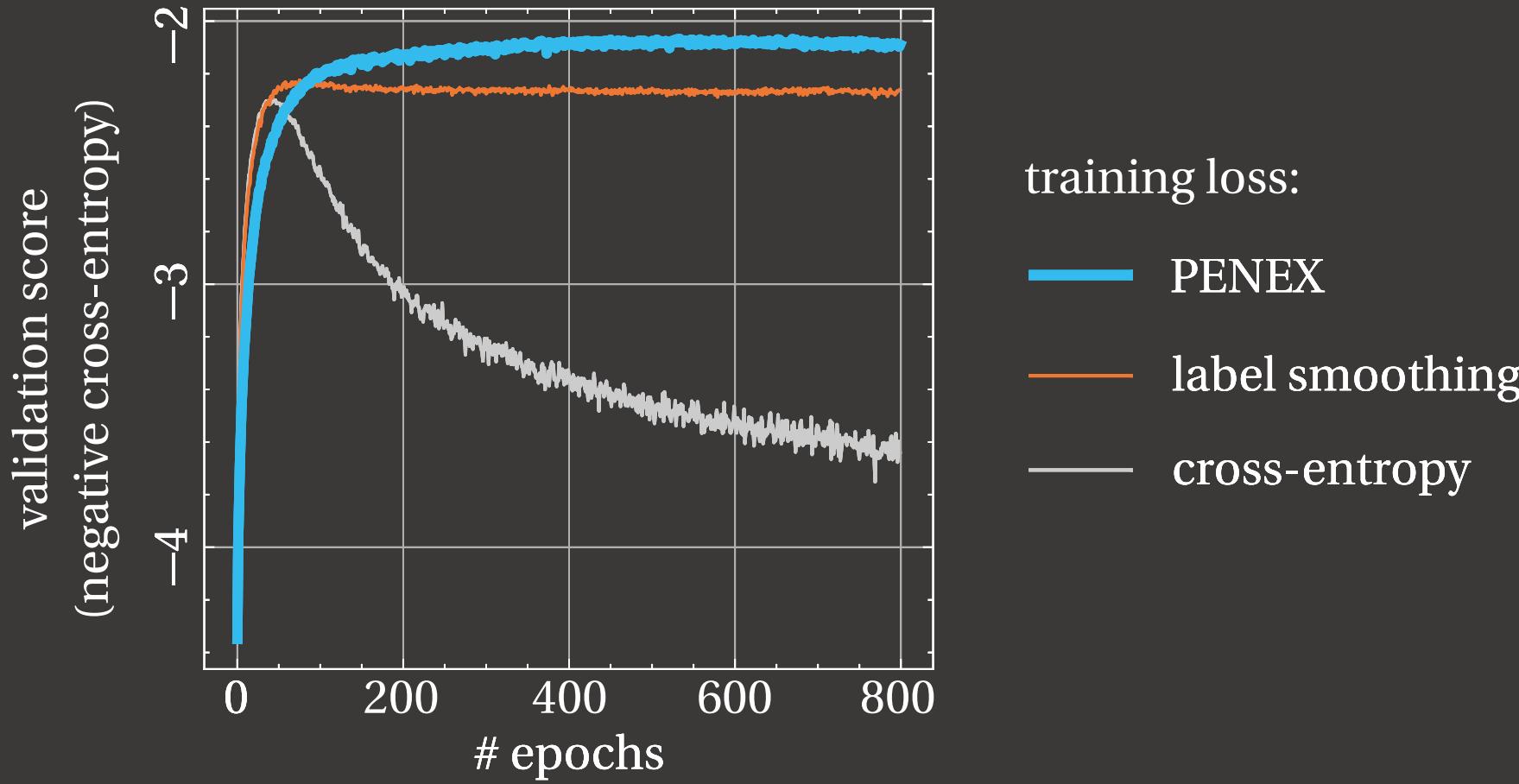
Penalized exponential loss (PENEX)

$$\hat{\mathbb{E}} \left[\underbrace{\exp \left\{ -\alpha f^{(y)}(\mathbf{x}) \right\}}_{\text{exponential loss}} + \rho \sum_{j=1}^K \exp \left\{ f^{(j)}(\mathbf{x}) \right\} \right]$$

prevents logits from
diverging

No constraints!

... and it works 🔥



PENEX often works better than other methods

Method	Metric	CIFAR-10	Noisy CIFAR-10	CIFAR-100	PathMNIST	BBC News
CE	ACC	0.785 ± 0.004	0.724 ± 0.004	0.443 ± 0.004	0.826 ± 0.004	0.967 ± 0.007
	-ECE	-0.162 ± 0.003	-0.179 ± 0.003	-0.287 ± 0.003	-0.151 ± 0.004	-0.032 ± 0.006
	-CE	-1.004 ± 0.024	-1.125 ± 0.019	-3.072 ± 0.034	-2.018 ± 0.130	-0.109 ± 0.024
	-BRIER	-0.346 ± 0.006	-0.424 ± 0.006	-0.794 ± 0.006	-0.300 ± 0.007	-0.051 ± 0.011
label smoothing	ACC	0.789 ± 0.004	0.747 ± 0.004	0.451 ± 0.005	0.829 ± 0.004	0.970 ± 0.006
	-ECE	-0.112 ± 0.002	-0.183 ± 0.003	-0.147 ± 0.002	-0.109 ± 0.002	-0.033 ± 0.006
	-CE	-0.657 ± 0.011	-0.889 ± 0.008	-2.292 ± 0.019	-0.589 ± 0.012	-0.115 ± 0.022
	-BRIER	-0.300 ± 0.005	-0.384 ± 0.004	-0.692 ± 0.004	-0.255 ± 0.005	-0.049 ± 0.010
confidence penalty	ACC	0.786 ± 0.004	0.733 ± 0.004	0.449 ± 0.006	0.828 ± 0.004	0.974 ± 0.006
	-ECE	-0.130 ± 0.002	-0.149 ± 0.003	-0.152 ± 0.002	-0.110 ± 0.003	-0.050 ± 0.005
	-CE	-0.731 ± 0.015	-0.866 ± 0.009	-2.254 ± 0.018	-0.917 ± 0.047	-0.094 ± 0.015
	-BRIER	-0.317 ± 0.005	-0.385 ± 0.004	-0.695 ± 0.005	-0.262 ± 0.005	-0.042 ± 0.008
focal loss	ACC	0.778 ± 0.004	0.708 ± 0.004	0.428 ± 0.005	0.803 ± 0.004	0.970 ± 0.006
	-ECE	-0.117 ± 0.002	-0.165 ± 0.003	-0.161 ± 0.003	-0.112 ± 0.003	-0.051 ± 0.005
	-CE	-0.661 ± 0.010	-0.905 ± 0.008	-2.341 ± 0.022	-0.939 ± 0.050	-0.092 ± 0.014
	-BRIER	-0.313 ± 0.005	-0.423 ± 0.004	-0.723 ± 0.005	-0.291 ± 0.006	-0.042 ± 0.008
PENEX	ACC	0.793 ± 0.004	0.766 ± 0.004	0.460 ± 0.005	0.833 ± 0.004	0.968 ± 0.006
	-ECE	-0.109 ± 0.002	-0.131 ± 0.002	-0.147 ± 0.003	-0.100 ± 0.003	-0.034 ± 0.006
	-CE	-0.646 ± 0.012	-0.716 ± 0.009	-2.140 ± 0.018	-1.200 ± 0.089	-0.124 ± 0.025
	-BRIER	-0.299 ± 0.005	-0.332 ± 0.004	-0.685 ± 0.004	-0.251 ± 0.006	-0.055 ± 0.011

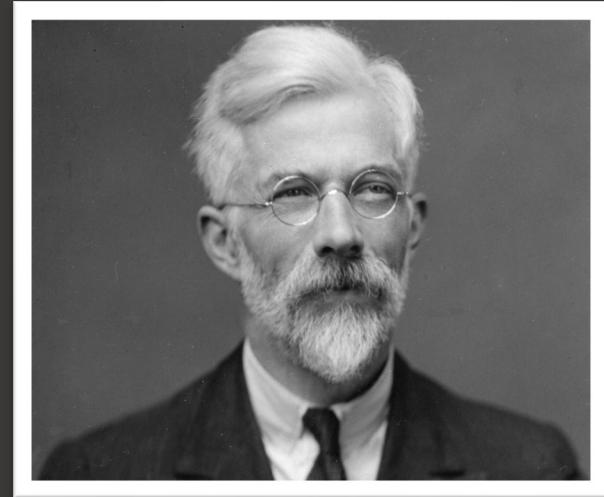
Theoretical properties of PENEX



Fisher consistency

“When applied to the whole population the derived statistic should be equal to the parameter.”

- Ronald A. Fisher



PENEX is Fisher consistent

$$\hat{\mathbb{E}} \left[\exp \left\{ -\alpha f^{(y)}(\mathbf{x}) \right\} + \rho \sum_{j=1}^K \exp \left\{ f^{(j)}(\mathbf{x}) \right\} \right]$$

PENEX is Fisher consistent

$$\mathbb{E} \left[\exp \left\{ -\alpha f^{(y)}(\mathbf{x}) \right\} + \rho \sum_{j=1}^K \exp \left\{ f^{(j)}(\mathbf{x}) \right\} \right]$$

Minimize w.r.t. $f \rightarrow f_*$

$$P(y \mid \mathbf{x}) \propto \exp \left\{ (1 + \alpha) f_*^{(y)}(\mathbf{x}) \right\}, \quad \forall \mathbf{x}$$

Common regularizers fail Fisher consistency

$$\mathcal{L}_{\text{CE}}(f) + \lambda \Omega(f)$$

Encompasses label smoothing, L2 regularization, confidence penalty, ...

Intuition: Regularization term $\Omega(f)$ pushes the solution off the Bayes-optimal predictor

$$\mathcal{L}_{\text{PENEX}}(f)$$

(nice car with five seats)

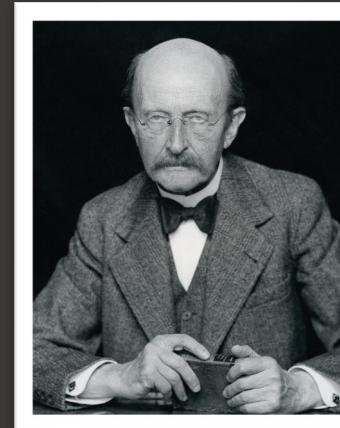
$$\mathcal{L}_{\text{CE}}(f) + \lambda \Omega(f)$$

(nice car with two seats
and two extra seats
mounted on top)

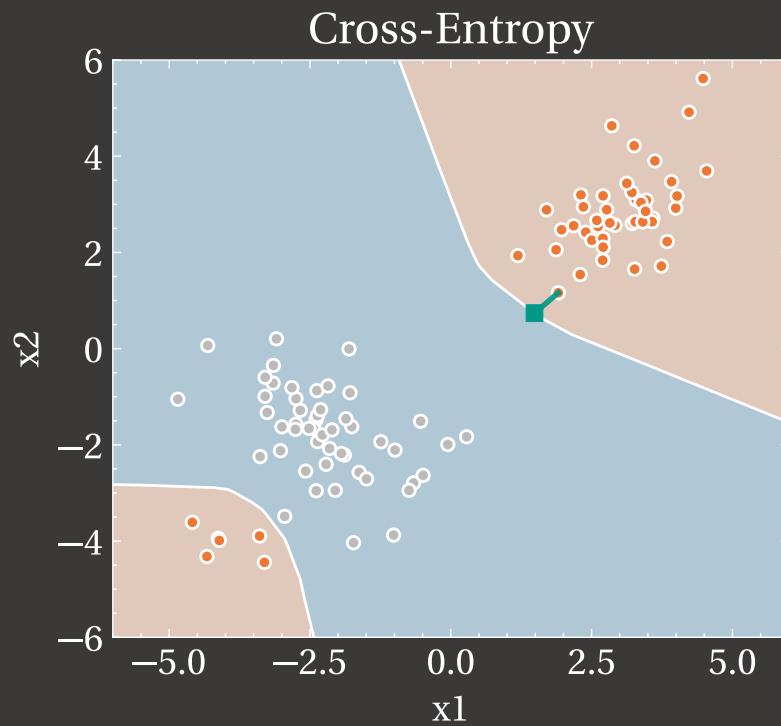
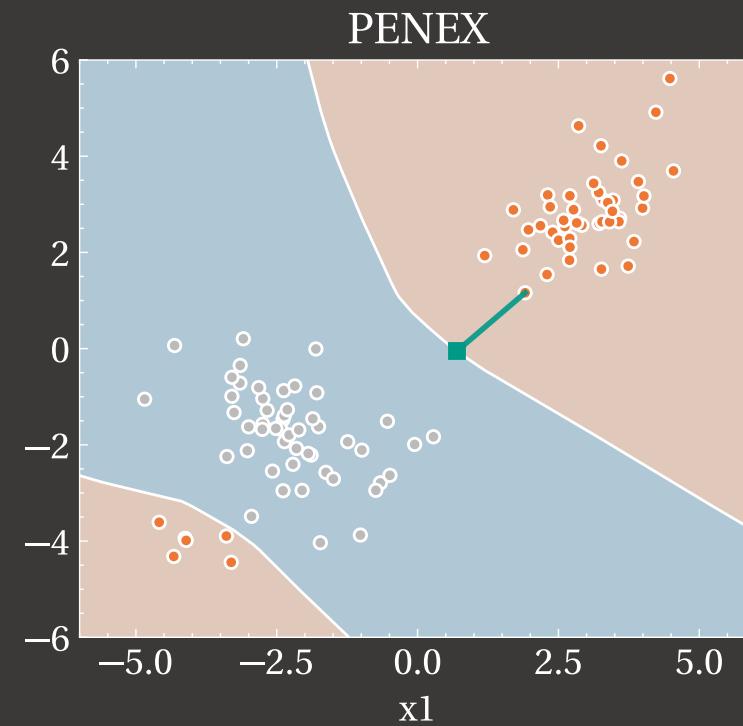
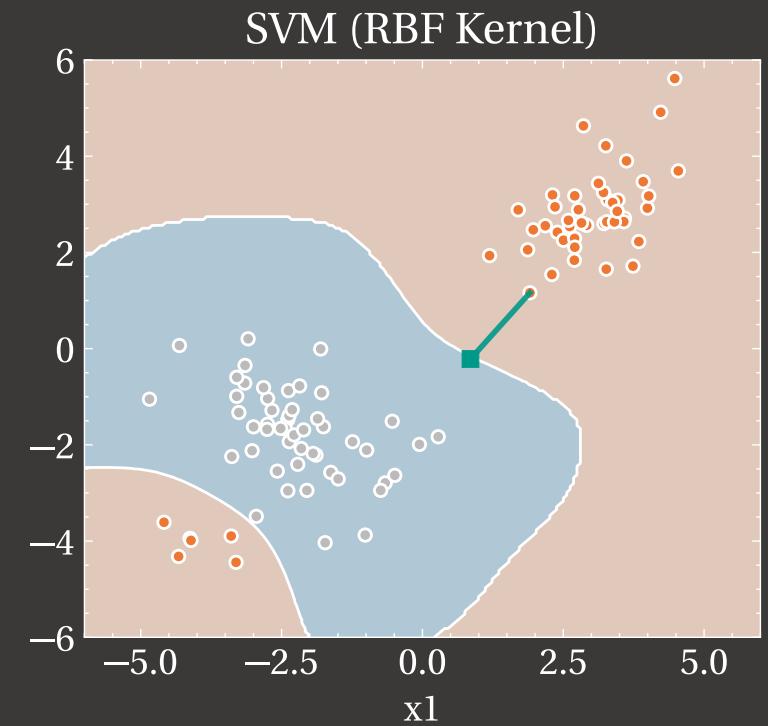
So why does it work?

“Insight must precede application.”

- Max Planck



Implicit margin maximization



PENEX provably maximizes margins

Defining the margin for example (\mathbf{x}, y) as

$$m_f(\mathbf{x}, y) := f^{(y)}(\mathbf{x}) - \max_{j \neq y} f^{(j)}(\mathbf{x}),$$

we show that

$$\mathbb{P}(m_f(\mathbf{x}, y) \leq \gamma) \leq e^{\gamma \frac{\alpha}{\alpha+1}} \rho^{-\frac{\alpha}{\alpha+1}} \mathbb{E}[\mathcal{L}_{\text{PENEX}}(f; \alpha, \rho)].$$

Key take-aways

- The “AdaBoost magic” can be translated to NNs
- Regularization is not at odds with Fisher consistency
- PENEX implicitly maximizes margins
- Let’s question the very foundations!

Preprint:

Code:

