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Understand
Intelligence

Intelligence develops under
evolution and the need to survive. o R,_E

HEW IDEAS STILL NEEDED.

% Efficient Learning is key to intelligence arising.

[1] Francois Chollet. ARC Challenges. On the measure of intelligence. Preprint. 2019.
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Principle of Least Time [1]

A ray of light travels from
point A to point B chooses a
path along which the time is
the least or minimum.
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Designing an efficient learning system is as if walking along an
% information space such that we can find a minimum path that reaches

the generalization error in the shortest time.

[1] Max Born and Emil Wolf. Principles of Optics: 60th Anniversary Edition. Cambridge University Press, 7 edition, 2019



Hamilton’s Law: Principle of Least Action [2]

The true path is the one for
which that integral is least.

[2] Feynman, Richard P. (Richard Phillips), 1918-1988. The Feynman Lectures on Physics.



Learning, too, follows the laws of
physics — principle of least action.

PHYSICS OF LEARNING: A LAGRANGIAN PERSPEC-
TIVE TO DIFFERENT LEARNING PARADIGMS

Siyuan Guo * Bernhard Schélkopf

Department of Computer Science, University of Cambridge Max Planck Institute for Intelligent Systems
Max Planck Institute for Intelligent Systems ELLIS Institute Tiibingen

United Kingdom & Germany Germany

* Correspondence: siyuan.guo@tuebingen.mpg.de

ABSTRACT

We study the problem of building an efficient learning system. Efficient learning
processes information in the least time, i.e., building a system that reaches a de-
sired error threshold with the least number of observations. Building upon least
action principles from physics, we derive classic learning algorithms, Bellman’s
optimality equation in reinforcement learning, and the Adam optimizer in genera-
tive models from first principles, i.e., the Learning Lagrangian. We postulate that
learning searches for stationary paths in the Lagrangian, and learning algorithms
are derivable by seeking the stationary trajectories.



Understand Kinematics Movement in Information Space

Table 1: Overview of Kinematics in Information Space.

In-context Learning Pre-train Learning

Data source

Position at time t: P(t)
Velocity at time ¢

’U(t) — lim5_>0 P(t+6()s_P(t)
Acceleration at time t

a(t) = lims_,o ”(Hég_”(t)

S1,...,8¢
—logp(si1,s2,-..,St)

Bi,B.,..., B,
€t :G(Bl,...,Bt)

—log p(st+1 | s<¢) €t+1 — €t

— log p(st+2 |
s<t+1) +logp(sit1 | s<t)

Applications (velocity curve)

In-context learning loss Test loss curve




Learning as a deceleration process.

- gpt2 —~== gpt2-medium —-= gpt2-large  ------ gpt2-xI|
4.5 - i 2 :
0.00 - : ; :
L]

= 4.0 3 -0.021
k) i=]
e ® —0.04
2 v
4 [
83> S —0.06
E — g —0.08 1
= £ -0.10

2.5 —0.12 -

0 200 400 600 800 1000 ) 200 400 600 800 1000
In-context position t In-context position t

Figure 1: Expected test-time in-context learning velocity and acceleration: (Left) In-context per-
token loss ¢; = v(t) = E[—logpe(z: | z<¢)]; (Right) In-context per-token difference in loss
Al = a(t) = E[€;+1 — ¢;]. In-context learning (as shown in the right) is a deceleration process,
meaning loss goes down but less quickly as time progresses. A similar phenomenon is expected in
training and test loss. Here, in-context loss is evaluated on OpenWebText.



Optimizing Physics Inspired Lagrangians.

Physics
Fermat’s principle = ff dt
Hamiltonian H(x,p) =p- -x— L(x,x)
the Lagrangian Sl¢] = [ Ldt,where L=T -V

Efficient learning is as if designing a process of walking along the information space
such that it takes the least time (1) to reach the desired error threshold.

T(6) = ming [, O(e[s] — 6) dt

(1) Least time = least sample size if information content of each sample is approximately
similar. It is open investigation on how to quantify time when varying information content.



Learning Objective cf. Fermat
T(6) = ming [, O(e[s] — J) dt
Tsample l ::Ignizignce I

T . Real-life
computation l processing time l



Unknown generalization error a priori for optimization.

Optimize Demo on Parametric Models: Linear Regression

T(6) = mins [ O(els] — 6) dt y=1xlB+ e,z € RP Ele =0, Var(e) = o?

=) generalization error : €(x)
Choose the 9 9 T v\ —1 T
observational path such e(x) = o° + o*u((X" X) " Elzz" ),

that the generalization
error is minimized with
the least number of
observations.

Where J is the test data point and X is the
sequence of observations as rows of X.

Assume inputs satisfy unit norm Hmz | ‘2 —
and uniformly drawn from the unit sphere SP

1
~1



Active Learning

miny, €(x) =0 + o

22?

Key: Find x such that § = X1 X = %Ip

Does optimal data path walks along a continuous path?

S = XTX — ina:T

r;xl # %Ip due to rank difference

Blocks of p data points to always remain
on the most efficient learning path.

Planning is needed to learn continuously
in the most efficient way.




Reinforcement Learning
T(6) = ming [, O(e[s] — 4) dt

Reinforcement Learning is optimizing the above function. Unknown error = reward

1. Optimize action subject to Find states s, $1, ..., $n
constraints is optimizing data /| and actions ag, a1, ...,an—1
state path in RL, cf. min_s. to maximize the objective function J,

“Wi t
2. UnknOV\_/n s.tep wise J = h(s,) +/ r(s1, ap, D),
generalization is replaced by 0
reward r(s, a).(speed can be subject to constraint 5,11 = f(s¢,at),
incorporated, e.g., r=-1) and ¢ is the final time.




Technical Detalls

How Bellman Optimality Equation is a solution for
seeking stationary path in the Lagrangian, and its
connection to Hamiltonian system (row 2 below).

Physics
Fermat’s principle T — ff dt
Hamiltonian H(x,p) =p- -x— L(x,Xx)

the Lagrangian Sl¢] = [ Ldt,where L=T -V



Constrained Lagrangian:

L({s},{a}, A) = h(sn) + S5 g (r(sk, ak, k) + (f(SA, ar) — Ski1)” kst

. . ons: 9L _ OL _
Seeking stationary solutions: D, — da, — 0)\ O \V/k

Define discrete-time Hamiltonian:  H*) (s, a, X) = r(s, a, k) + f(s,a)T A

Re-write the Lagrangian:

L= h(Sn) — T)\ + Sng + Zn_l ( H®) (Sk,ak,)\k+1) — S%x\k)

4L = [Vah(s,) — A N ds, + Nibiso }

[1] Derivation is classical control theory textbook material.

ash —/\Aj dsk—l—( .)ak




dL = (Vsh(sn) — An)Tds, + N dso + Ypt (2= — Xc)"dsy + (2L~ ) day

Stationary solutions needs to satisfy below constraints:

]
An = m | Let Ay = Vs V(sy)

Or(sk,ar, k) Of(sk,ax)’ ] Or(si,ar, k) Of(sp,ar)”
= A S - S
)\k 3Sk + aSk hrl I v V(Sk) 8sk + Bsk v V(Sk+1)

oH®) V(sk) = r(sk,ar, k) + V(f(sk,ar))

A

=0

aj, = arg max H® (Sk, U, Ag11) implies
u

Bellman Optimality

man OPtmally | /(s,) = max, {r(sk,u, k) + V(f(sk, )}

[1] Richard Bellman. Dynamic programming and stochastic control processes. 1958.



The solution for stationary path in the Lagrangian, written in terms
of rewards, satisfies Bellman’s optimality equation. Thus, optimizing
Bellman’s equation is searching for the stationary path.

H® (s,a,)) :‘fr(s,a, k) Jr f(s,a)l' A

Physics
Fermat’s principle = ff dt
Hamiltonian H(x,p) =p-x § L(x,%)|

the Lagrangian Sl¢] = [ Ldt,where L=T -V




Discriminative Modeling
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The Spark for A Postulation

Potential energy is something intrinsic about the task: K(e’ CIZ‘)
Kinetic energy? And efficiency?

Cramer Rao Lower Bound:

A

Let @ be an unbiased estimator. Then under regularity conditions,
Var(6) — I(6)~1
is positive semi-definite. An unbiased estimator attains the lower bound is

an efficient estimator.
I1(0) :=E[(Vol(6;2))(Vol(6;2))"]

ane Lymad _ _ 8 o,
Newtonian; ~mv” — mig = B[ l(0; )]

)




A Postulation

LU, Vgl) =T -V = 5=(Vel)TF(0) 1 (Vyl) — £(6; )
where P is the number of model parameters.

Stationary solution satisfies the Euler-Lagrange equation for scalar field theory

oL 8 or oL
Bl 5 :E[c‘)t Y, Zae aae/ao)]

oL
—1=F .

| \Z v, 7]

The solution at 1 . oL .
stationary points needs —1=—E[Vp - (F Vsl due t = F V!t

to be an MLE. P Vo - ( ol)] - dueto OVy/ b

~1= %tr(Vo(F(H)‘l) E[Vel]  +FE[V}l]) = pu(FE[V{l) = -

S—— N——

=0 at stationary points ——F



A Postulation cont.

Learning dynamics of the loss fields operationalizes through changes in particle
dynamics (i.e., changes in parameter):

LU, Vgl) =T -V = 5=(Vel)T F(0) 1 (Vyt) — £(6; )
Limg" 6 — £(6),m = L,6 = F12V ¢

RMSprop: 0,41 + 0, — a—3¢ 31)

Vot e

A

my
VoL + ¢
where g; = Vg, 4, vy = Bovi_1 + (1 — B2)gt © g, and my = Bimy_y + (1 — B1)gs, Ty = g
Uy = 13—763, and e are added for numerical stability. From the Lagrangian, one can also predict the
inefficiency of SGD, as it does not satisfy the Euler-Lagrange equation. Combining with Section 3.2

Adam: 0t+1 < Ht - (32)



Physics Learning
Fermat’s principle T = ff dt T = fe G[E;]] dt [*]
Hamiltonian H(x,p) =p-x — L(x,x) H(s,a,)\) = r(s,a) + f(s,a)T A [{]
the Lagrangian L=T-V L(¢,Vel) = 5(Vol)T F~ Vol —£(6) [*]
Applications Algorithms

Fermat’s principle
Hamiltonian

the Lagrangian

Parametric Models
Reinforcement Learning

Generative Models / Supervised Learning

A-optimality (Atkinson et al., 2007)
Bellman’s Equation (Bellman, 1958)

Adam (Kingma, 2014) / RMSprop
(Tieleman, 2012)

Notes: T in Fermat’s principle denotes time taken to travel from point A to point B; €[()], €[s] is the generaliza-

tion error after observing zero data to data sequence s := s1, Sa, .

..; H is the (physical) Hamiltonian system

with position x and momentum p and Lagrangian L; H (s, a, )) is the reinforcement learning correspondent
with state s, action a, reward r(s, a), transition dynamics f(s,a) and momentum equivalent \; L =T — V
represents kinetic energy minus potential energy; £ denotes some log-likelihood function; V/ is gradient with
respect to model parameters § € R”; F~! denotes the inverse Fisher information. Bold symbols are vectors;
(~)T is transpose; & is derivative with respect to time. The learning Lagrangian indicated via [{] means it is
classic textbook material in control theory (see Todorov (2006)). Learning Lagrangians indicated by [*] are
proposed in this work; to the best of our knowledge, no prior published work exists as of September 2025.



1. Postulate: Learning too adheres to the laws of physics.
2. Demo: the principle of least action.

# Testable predictions via Community Efforts.

(looking for discussions / collaborations on experiments to verify)



Structures




Structures in Causality.

A way to describe data in terms of structure.

Aset of observables X1, Xo, ..., X, o

A set of structural assignments: e G

X; = fz'(Xpaa UZ),VZ

The model is Markovian if Uj; are all jointly e
independent.

— Structural Causal Model [1]

[1] Pearl J. Causality. 2nd ed. Cambridge University Press; 2009.



Empirically Infer Structure from Data

P(X; | PA;)
|s independent of

P(X; | PA;)

In the sense of:
No information exchange
No intervention propagation.

Object and Perception process are independent.




Causal de Finetti: On the Identification of Invariant

C ausa I d e F [ nett[ Causal Structure in Exchangeable Data
T h e 0 re m . Si);l{;lq Guplz* . CVikt:o_a T(’)th;’l‘w Blflrnhla:rld S.chiilh;op%'2 11l_“eren; Huszar!
niversity of Cambridge ax Planck Institute for Intelligent Systems
Let 1(Xi,Yi)} be an infinite T maebingm e oot
sequence of binary random variables. NeurlPS 2023
Suppose:

. The sequence is infinitely exchangeable,
* ¥neN: Y[n] 1L Xpiq ’ X[n],where [n] = {1, o ,n}
Then there exists two latent variables @, ¢/ with suitable probability

measure ([, 1/ such that P(Xi =z1,Y1 =91,..., Xp = 0, Y, = yn)
— [ U ptwilo, 0)p(ai | O)du(8)dv(w)



Causal de Finetti /\;

Theorem. 0 "
Let 1(Xi,Yi)} be an infinite

sequence of binary random variables. f
Suppose:

. The sequence is infinitely exchangeable, Not Inform and Not
Influence:

> Yn € NIY[n] 1L Xn ’X[n]aWhere [n] — {1""’”} 36,4 and 6 1L ¢

Then there exists two latent variables £), ¢, with suitable probability
measure ([, 1/ such that P(Xi =z1,Y1 =91,..., Xp = 0, Y, = yn)

_ / ﬁp(wi,zp)p(wi | 6)du(6)dv(y)




Exchangeable (de Finett):

. ) P(Xl,...,Xn):P(Xﬂ'(]_)7"’7X71'(’n))
Causal de Finetti P(X1,...,Xn) = [TI"y p(z: | 6)du(6)
Theorem. Y AL Xpy) — P(Y' | X)
Let {(X:,Yi)} be an infinite > X, ~ P(X)
sequence of binary random variables. (X0, Y2) £ (Xim, Y)

nyLtn my +m

Suppose:

. The sequence is infinitely pxchangeable
“|¥n € N: Yy AL Xy | Xpy, where [n] = {1,...,n}

Then there exists two latent variables @, ¢/ with suitable probability
measure ([, 1/ such that P(Xi =z1,Y1 =91,..., Xp = 0, Y, = yn)

_ / ﬁp(wi,zp)p(wi | 6)du(6)dv(y)



Impact: Understanding and Structure Discovery

(&

data means independent latent variables
controlling each mechanisms.

0,y 0 o | L 4 i Y
() (%) é () () é
(Independent mechanisms under mixture Y X7 1l Y5 | X X7 1Y | Yl\

Heterogenous data sources enable

structure identification.

U




Effect Estimation Representation Learning Counterfactual Reasoning

IDENTIFIABLE EXCHANGEABLE MECHANISMS FOR

Do Finetti: on Causal Effects for Exchangeable Data CAUSAL STRUCTURE AND REPRESENTATION LEARN- Counterfactual reasoning:

an analysis of in-context emergence

ING
. " F *13 Q. *1,2 & o 13
Siyuan Guo'# * Chi Zhang? Karthika Mohan® Ferenc Huszar*'  Bernhard Schilkopf'! Patrik Reizinger*'~, Siyuan G‘é‘;iel;nﬂeg’r:zi‘;iﬁf' Bernhard Schélkopf 1™, and
1Max Planck Institute for Intelligent Systems ~ 2Toyota Research Institute Moritz Miller'? * Bernhard Schilkopf'? Siyuan Guo'?
3 Oregon State University  * University of Cambridge IMax Planck Institute for Intelligent Systems, Tiibingen, Germany !Max Planck Institute for Intelligent Systems ~ ?ETH Zurich  ® University of Cambridge
T Equal supervision 2University of Cambridge, Cambridge, United Kingdom
3ELLIS Institute Tiibingen, Tiibingen, Germany
*Tiibingen AI Center, Tiibingen, Germany Abstract
Abstract

. " ABSTRACT o p Large-scale neural language models (LMs) exhibit remarkable performance in

Identifying latent representations or causal structures is important for good gen- in-context learning: the ability to learn and reason the input context on the fly

‘We study causal effect estimation in a setting where the data are not i.i.d. (inde-

pendent and identically distributed). We focus on exchangeable data satisfying an eraliza_tion and downstream task performance. However, both fields d;velf)ped without parameter update. This work studies in-context counterfactual reasoning in
ption of independent causal i Traditional causal effect estimati l'?ﬂ'le{' }ndependent.ly. We observe that SEVera-l.S'-VUCl“@ and representation iden- language models, that is, to pr_edict the consequences of changes under hypothet.i_cal
frameworks, e.g., relying on structural causal models and do-calculus, are typically tifiability methods, particularly those that require multiple environments, rely on scenarios. We focus on studying a well-defined synthetic setup: a linear regression
limited to i.i.d. data and do not extend to more general exchangeable generative € ; nfm—m,dA (indep an(? distributed) data: To formal- task that requires noise abduc_uon, where accurate prediction is based on inferring
processes, which naturally arise in multi-environment data. To address this gap, we ize this connection, we propose the Id ble Exch: bl ‘f h (IEM) and copying the contextual noise from factue_xl obseryaﬁons. ‘We show that langque
develop a generalized framework for exchangeable data and introduce a truncated framework to unify key representation and causal structure learning methods. IEM models are capable of counterfactual reasoning in this controlled setup and provide
factorization formula that facilitates both the identification and estimation of causal provides a unified probabilistic graphical model encompassing causal discovery, insights that counterfactual reasoning for a broad class of functions can be reduced
effects in our setting. To illustrate potential applications, we introduce a causal Independent Component Analysis, and Causal Representation Learning. With the to a transformation on in-context observations; we find self-attention, model depth,
Pélya urn model and demonstrate how intervention propagates effects in exchange- help of the [EM model, we generalize the Causal de Finetti theorem of Guo et al. i data diversity.in pre-traifiing diive petformance in Transformers, Moreiinter-
estingly, our findings extend beyond regression tasks and show that Transformers

able data settings. Finally, we develop an algorithm that performs simultaneous (2024a) by relaxing the necessary conditions for causal structure identification in
causal discovery and effect estimation given multi-environment data.

can perform noise abduction on sequential data, providing preliminary evidence
on the potential for counterfactual story generation. Our code is available here.

exchangeable data. We term these cc cause and variability, and
show how they imply a duality condition in identifiable representation learning,
leading to new identifiability results.

NeurlPS 2024 oral ICLR 2025 spotlight NeurlPS 2025




Reinforcement Learning

Skill Learning via Policy Diversity Yields Identifiable

Representations for Reinforcement Learning

Patrik Reizinger*!2, Bilint Mucsanyi*>*, Siyuan Guo**, Benjamin Eysenbach®,

Bernhard Schélkopf' 2, and Wieland Brendel '

!Max Planck Institute for Intelligent Systems, Tiibingen, Germany
2ELLIS Institute Tiibingen, Tiibingen, Germany
3University of Tiibingen, Tiibingen, Germany
“Tiibingen AI Center, Tiibingen, Germany
SUniversity of Cambridge, Cambridge, United Kingdom
SPrinceton University, Department of Computer Science, Princeton, United States

Abstract

Self-supervised feature learning and pretraining methods in reinforcement learning
(RL) often rely on information-theoretic principles, termed mutual information
skill learning (MISL). These methods aim to learn a representation of the envi-
ronment while also incentivizing exploration thereof. However, the role of the
representation and mutual information parametrization in MISL is not yet well un-
derstood theoretically. Our work investigates MISL through the lens of identifiable
representation learning by focusing on the Contrastive Successor Features (CSF)
method. We prove that CSF can provably recover the environment’s ground-truth
features up to a linear transformation due to the inner product parametrization of
the features and skill diversity in a discriminative sense. This first identifiability
guarantee for representation learning in RL also helps explain the implications of
different mutual information objectives and the downsides of entropy regularizers.
‘We empirically validate our claims in MuJoCo and DeepMind Control and show
how CSF provably recovers the ground-truth features both from states and pixels.

Under Review

Computational Linguistics

On the Emergence and Test-Time Use of Structural Information in Large
Language Models

Anonymous ACL submission

Abstract

Learning structural information from observa-
tional data is central to producing new knowl-
edge outside the training corpus. This holds
for mechanistic understanding in scientific dis-
covery as well as flexible test-time composi-
tional generation. We thus study how language
models learn abstract structures and utilize the
learnt structural information at test-time. To
ensure a controlled setup, we design a natural
language dataset based on linguistic structural
transformations. We empirically show that the
emergence of learning structural information
correlates with complex reasoning tasks, and
that the ability to perform test-time composi-
tional generation remains limited.

To ensure a controlled synthetic playground, we
generate a natural language dataset based on Trans-
formational Grammar (TG) (Chomsky, 1957; Rad-
ford, 1988). This allows us to analyze whether and
how the model learns the emergence of structure
during training, analyze whether they can compose
learnt structures at test-time, and provide evidence
on where in the model this behavior occurs. By
doing so, we shine light on how LLMs can gener-
ate sentences beyond those directly observed in the
corpus. Our contributions are:

« We introduce a natural language dataset based
on linguistic structural transformations to for-
mally study structural information in language
(Section 3.1).

Under Review




Foundation Models for Causal Inference.

DO-PFN: IN-CONTEXT LEARNING FOR =—
CAUSAL EFFECT ESTIMATION —| AW ‘ A
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Pre-training

Simulated Inference

Do-PFN

i

L@, }'"‘)

-
- I

Figure 1: Do-PFN overview: Do-PFN performs in-context learning (ICL) for causal effect estimation, predicting
conditional interventional distributions (CIDs) based on observational data alone. In pre-training, a large number of
structural causal models (SCMs) is sampled. For each SCM, we sample an entire dataset of M i observational data
points D° = {(¢3°,x%°, 92 )}jj‘flb. We also sample M®" interventional data points D™ = {(ti*, x2*, yi")}M 1. To
simulate inference, we input (¢, zP*) along with the entire observational dataset D,,;, which can have various sizes and
dimensionalities. Subsequently, the transformer makes predictions g, and we calculate the pre-training loss L (7, y*")
between the predictions ¢ and the ground truth interventional outcomes y‘". Pre-training repeats this procedure across
millions of sampled SCMs to meta-learn how to perform causal inference in context. In real-world applications,
Do-PFEN leverages the many simulated interventions it has seen during pre-training to predict CIDs, relying only on
observational data and requiring no information about the causal graph.
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Synthetic Case Studies.

Observed Observed Confounder + Unobserved Front-Door Back-Door
Confounder Mediator Mediator Confounder Criterion Criterion

Lo la e 2 Sy

Figure 2: Case studies: Visualization of the graph structures of our six causal case studies, requiring Do-PFN to
automatically perform adjustment based on the front-door and back-door criteria. Treatment variables ¢ are visualized

in orange, covariates x in red, and outcomes y in blue. Gray variables represent unobservables, not shown to any of the
methods yet influencing the generated data.



Observed Observed Confounder + Unobserved Front-Door Back-Door
Confounder Mediator Mediator Confounder Criterion Criterion
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Hybrid Synthetic Real-world data

Amazon Sales
U . ' 1 ' ' . S

Law School (Race) Amazon Sales Law School (Race)
Do-PFN < Do-PFN

4

Do-PFN-CATEfH =~ '~ " " " ' 2 Do-PFN-CATE Rt
Dont-PFN-CATE : Dont-PFN-CATE
Causal Forest Causal Forest
TabPFN-CATE (S) TabPFN-CATE (S)
TabPFN-CATE (X) TabPFN-CATE (X)

Dont-PFN - Dont-PFN

Random Forest - Random Forest

, : ) TabPFN-CATE (T) ©  TabPFN-CATE (T)
TabPEN (v2) - TabPFN (v2) TabPFN-CATE (DML) : i TabPFN-CATE (DML)
0.0 0.2 0.4 0.00 0.02 0.04 00 02 04 0.00 0.05
MSE (DoWhy-CID) MSE (DoWhy-CID) MSE (DoWhy-CATE) MSE (DoWhy-CATE)

Figure 5: Hybrid synthetic-real-world data: Bar-plots with 95% confidence intervals depicting distributions of
normalized mean squared error (MSE) of Do-PFN compared to causal and regression baselines in interventional
outcome prediction (left) and conditional average treatment effect (CATE) estimation (right). Do-PFN’s strong
performance in synthetic settings extends to hybrid synthetic-real-world scenarios, especially in CATE estimation.



Curious on Intelligence

VYR ®
;L w

I \ .
H.. l I"l‘
SFyraEEsnEEEr SEREEEER

FEFTTHEEERERE JEREEEERD @ 2(\
[ ] 28 IIII““‘ ( :: ) |

Learning Structure Models



Physics of Learning: A Lagrangian perspective to different learning paradigms. Preprint.
Siyuan Guo and Bernhard Scholkopf

Causal de Finetti: On the Identification of Invariant Causal Structure in G
Exchangeable Data. NeurlPS 2023.
Siyuan Guo*, Viktor Téth*, Bernhard Scholkopf, Ferenc Huszar. RESEARCH

Do Finetti: On Causal Effects for Exchangeable Data. NeurlPS 2024 oral (acceptance rate 0.46%).
Siyuan Guo, Chi Zhang, Karthika Mohan, Ferenc Huszar, Bernhard Schoelkopf.

Identifiable Exchangeable Mechanisms for Causal Structure and Representation
Learning. ICLR 2025 spotlight (acceptance rate 5.1%).
Patrik Reizinger*, Siyuan Guo*, Ferenc Huszar, Bernhard Schoélkopf, Wieland Brendel

Counterfactual reasoning: an analysis of in-context emergence. NeurlPS 2025. CAMBRIDGE

Moritz Miller, Bernhard Scholkopf, Siyuan Guo COMPUTER SCIENCE

AND TECHNOLOGY

Skill Learning via Policy Diversity Yields Identifiable Representations for Reinforcement Learning. Under Review.
Patrik Reizinger*, Balint Mucsanyi*, Siyuan Guo*, Benjamin Eysenbach, Bernhard Schaolkopf, Wieland Brendel

On the Emergence and Test-Time Use of Structural Information in Large Language Models. Under Review.
Michelle Chao Chen, Moritz Miller, Bernhard Scholkopf, Siyuan Guo

Do-PEN: In-Context Learning for Causal Effect Estimation. NeurlPS 2025 spotlight (acceptance rate 3.19%).
Jake Robertson*, Arik Reuter*, Siyuan Guo, Noah Hollmann, Frank Hutter, Bernhard Schoélkopf



https://arxiv.org/pdf/2509.21049
https://arxiv.org/abs/2203.15756
https://arxiv.org/abs/2203.15756
https://arxiv.org/abs/2405.18836
https://arxiv.org/abs/2406.14302
https://arxiv.org/abs/2406.14302
https://arxiv.org/abs/2506.05188
https://arxiv.org/abs/2507.14748
https://arxiv.org/abs/2506.06039

