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Efficient Learning is key to intelligence arising. 

Intelligence develops under 
evolution and the need to survive. 

Understand 
Intelligence

[1] Francois Chollet. ARC Challenges. On the measure of intelligence. Preprint. 2019. 

https://arxiv.org/abs/1911.01547


Reinforcement Learning

Parameter Estimation

Unsupervised 
Learning



Principle of Least Time [1] 

Designing an efficient learning system is as if walking along an 
information space such that we can find a minimum path that reaches 
the generalization error in the shortest time.

A ray of light travels from 
point A to point B chooses a 
path along which the time is 
the least or minimum. 

[1] Max Born and Emil Wolf. Principles of Optics: 60th Anniversary Edition. Cambridge University Press, 7 edition, 2019



Hamilton’s Law: Principle of Least Action [2] 

The true path is the one for 
which that integral is least.

[2] Feynman, Richard P. (Richard Phillips), 1918-1988. The Feynman Lectures on Physics.



Learning, too, follows the laws of 
physics – principle of least action.



Understand Kinematics Movement in Information Space



Learning as a deceleration process. 



Optimizing Physics Inspired Lagrangians.

Efficient learning is as if designing a process of walking along the information space 
such that it takes the least time (1)  to reach the desired error threshold. 

(1) Least time = least sample size if information content of each sample is approximately 
similar. It is open investigation on how to quantify time when varying information content. 



Learning Objective cf. Fermat

Intrinsic 
Intelligence

Real-life 
processing time



Optimize

Choose the 
observational path such 
that the generalization 
error is minimized with 
the least number of 
observations. 

Unknown generalization error a priori for optimization.

Demo on Parametric Models:  Linear Regression

Where       is the test data point and      is the 
sequence of observations as rows of     .

Assume inputs satisfy unit norm                          
and uniformly drawn from the unit sphere



Active Learning

Does optimal data path walks along a continuous path?

Planning is needed to learn continuously 
in the most efficient way.

Blocks of p data points to always remain 
on the most efficient learning path. 



Reinforcement Learning is optimizing the above function. Unknown error = reward 

Reinforcement Learning

1. Optimize action subject to 
constraints is optimizing data / 
state path in RL, cf. min_s.

2. Unknown step-wise 
generalization is replaced by 
reward r(s, a).(speed can be 
incorporated, e.g., r = -1)



Technical Details 

How Bellman Optimality Equation is a solution for 
seeking stationary path in the Lagrangian, and its 
connection to Hamiltonian system (row 2 below).



[1] Derivation is classical control theory textbook material. 

Constrained Lagrangian:

Seeking stationary solutions:

Define discrete-time Hamiltonian:

Re-write the Lagrangian:



Stationary solutions needs to satisfy below constraints:
Terminal 
Reward

Bellman Optimality 
Equation [1]

[1] Richard Bellman. Dynamic programming and stochastic control processes. 1958.



 

The solution for stationary path in the Lagrangian, written in terms 
of rewards, satisfies Bellman’s optimality equation. Thus, optimizing 
Bellman’s equation is searching for the stationary path.



Efficient Learning <> Least Time <> Seek Stationary Path 



The Spark for A Postulation 

Potential energy is something intrinsic about the task:

Kinetic energy? And efficiency?

Cramer Rao Lower Bound:

Let       be an unbiased estimator. Then under regularity conditions, 

is positive semi-definite. An unbiased estimator attains the lower bound is 
an efficient estimator. 



A Postulation 

where P is the number of model parameters.

Stationary solution satisfies the Euler-Lagrange equation for scalar field theory

The solution at 
stationary points needs 

to be an MLE. 



A Postulation cont.

Learning dynamics of the loss fields operationalizes through changes in particle 
dynamics (i.e., changes in parameter):





1. Postulate: Learning too adheres to the laws of physics. 
2. Demo: the principle of least action.

Testable predictions via Community Efforts.

(looking for discussions / collaborations on experiments to verify)

Current 
AI

Future  
AI



Structures



Structures in Causality. 

A way to describe data in terms of structure. 

A set of observables

A set of structural assignments:

The model is Markovian if       are all jointly 
independent. 

– Structural Causal Model [1]

[1] Pearl J. Causality. 2nd ed. Cambridge University Press; 2009.



Empirically Infer Structure from Data

Object and Perception process are independent. 

Is independent of 

In the sense of:
No information exchange
No intervention propagation. 



Causal de Finetti
Theorem.
 Let                    be an infinite 
sequence of binary random variables. 

Suppose: 
1. The sequence is infinitely exchangeable, 
2.  

Then there exists two latent variables          with suitable probability 
measure           such that 

NeurIPS 2023



Causal de Finetti
Theorem.
 Let                    be an infinite 
sequence of binary random variables. 

Suppose: 
1. The sequence is infinitely exchangeable, 
2.  

Then there exists two latent variables          with suitable probability 
measure           such that 

Not Inform and Not 
Influence:



Causal de Finetti
Theorem.
 Let                    be an infinite 
sequence of binary random variables. 

Suppose: 
1. The sequence is infinitely exchangeable, 
2.  

Then there exists two latent variables          with suitable probability 
measure           such that 

Exchangeable (de Finett):

 



Impact: Understanding and Structure Discovery

Independent mechanisms under mixture 
data means independent latent variables 
controlling each mechanisms.  

 

Heterogenous data sources enable 
structure identification. 



NeurIPS 2024 oral ICLR 2025 spotlight NeurIPS 2025

Effect Estimation Representation Learning Counterfactual Reasoning



Under Review

Under Review

Reinforcement Learning

Computational Linguistics



           Foundation Models for Causal Inference. 

NeurIPS  2025 spotlight





                     Synthetic Case Studies.





Hybrid Synthetic Real-world data



       Learning     Structure         Models

                Curious on Intelligence
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